Advertisement

Al dopant-dependent third-order nonlinear optical parameters in ZnO thin films under CW Nd: YAG laser irradiation

  • Fahimeh AbrinaeiEmail author
Article
  • 13 Downloads

Abstract

Structural, morphological and optical properties of Al-doped ZnO thin films synthesized by the spray pyrolysis method on the FTO-coated glass substrate are investigated in this study. The measurements were carried out on a series of films with various contents of Al dopant from 0 up to 4% of Al/ZnO ratios. 2-D and 3-D atomic force microscopy images revealed that the Al content has a considerable influence on the surface morphology and roughness of thin films so that the grain size and surface roughness of the films decreased with increasing the Al contents. Room temperature PL spectra revealed UV as well as defect emission peaks which experienced a slight blue shift with Al/ZnO ratios increasing from 1 to 4%. Measurements of nonlinear optical properties of Al-doped ZnO thin films were performed using a CW Nd: YAG laser at 532 nm by the Z-scan technique. It was demonstrated that the Al-doped ZnO thin films have a negative nonlinearity can be related to the thermal effects. The optical limiting measurements confirmed that undoped and Al-doped ZnO thin films are good candidates for optical limiter devices at 532 nm wavelength of lasers. The effects of defect states on the nonlinearity of thin films are also investigated in this work.

Notes

Acknowledgements

This work has been supported by the East Tehran Branch of Islamic Azad University, and the author would like to thank for this support.

References

  1. 1.
    L. Jing, W. Hui, Opt. Express 20, 21552–21557 (2012)CrossRefGoogle Scholar
  2. 2.
    D. Fang, K. Lin, T. Xue, C. Cui, X. Chen, P. Yao, H. Li, J. Alloys Compd. 589, 346–352 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Ma, G.T. Du, J.Z. Yin, T.P. Yang, Y.T. Zhang, Semicond. Sci. Technol. 20(12), 1198–1202 (2005)CrossRefGoogle Scholar
  4. 4.
    H. Rotella, Y. Mazel, S. Broche, A. Valla, A. Pautrat, C. Licitra, N. Rochat, C. Sabbione, G. Rodriguez, E. Nolot, J. Phys. D: Appl. Phys. 50(48), 5106–5115 (2017)CrossRefGoogle Scholar
  5. 5.
    H.-C. Chen, P.-W. Cheng, K.-T. Huang, Appl. Opt. 56(4), C163–C167 (2017)CrossRefGoogle Scholar
  6. 6.
    M.-C. Li, C.-C. Kuo, S.-H. Peng, S.-H. Chen, C.-C. Lee, Appl. Opt. 50(9), C197–C200 (2011)CrossRefGoogle Scholar
  7. 7.
    W. Wang, T. Ai, Q. Yu, Sci. Rep. 7, 42615 (2017)CrossRefGoogle Scholar
  8. 8.
    X.-Y. Yan, C.-B. Yao, J. Li, J.-Y. Hu, Q.-H. Li, S.-B. Yang, Opt. Mater. 55, 73–77 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Mahdavi, S.S. Ashraf Talesh, Adv. Powder Technol. 28, 1418–1425 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Khan, S.-H. Baek, J.H. Kim, J. Alloy. Compd. 709, 819–828 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, B. Liu, C. Ni, Y. Hu, S. Zhao, Q. Wu, Mater. Res. Bull. 86, 173–177 (2017)CrossRefGoogle Scholar
  12. 12.
    O. Makuku, F. Mbaiwa, T.S. Sathiaraj, Ceram. Int. 42(13), 14581–14586 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Ovsiannikova, M. Dranchuk, G. Lashkarev, V. Kartuzov, M. Godlewski, Superlattice Microstruct. 107, 1–4 (2017)CrossRefGoogle Scholar
  14. 14.
    A.A. Akl, S.A. Mahmouda, S.M. AL-Shomare, A.S. Hassanien, Mater. Sci. Semicond. Process. 74, 183–192 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Stavale, N. Nilius, H.-J. Freund, J. Phys. Chem. Lett. 4(22), 3972–3976 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Vidya, P. Ravindran, H. Fjellvag, B.G. Svensson, E. Monakhov, M. Ganchenkova, R.M. Nieminen, Phys. Rew. B 83, 045206 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983–7990 (1996)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, S.C. Su, M. Younas, F.C.C. Ling, W. Anwand, A. Wagner, RSC Adv. 5, 12530–12535 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Hussaina, Y. Khan, V. Khranovskyy, R. Muhammad, R. Yakimova, Prog. Nat. Sci.-Mater. 23(1), 44–50 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Jia, A. Takasaki, N. Oka, Y. Shigesato, J. Appl. Phys. 112, 013718 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  22. 22.
    K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, Opt. Laser Technol. 102, 147–152 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Rajabi, F. Abrinaei, Opt. Laser Technol. 109, 131–138 (2019)CrossRefGoogle Scholar
  24. 24.
    K.K. Nagaraja, S. Pramodini, A.S. Kumar, H.S. Nagaraja, P. Poornesh, Laser Phys. 24, 085402–085411 (2014)CrossRefGoogle Scholar
  25. 25.
    G.P. Bharti, A. Khare, Opt. Mater. Express 6(6), 2063–2080 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Demetrios, I.C. Christodoulides, G.J. Khoo, G.I. Salamo, Stegeman, E.W. Van Stryland, Adv. Opt. Photonics 2(1), 60–200 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Ponnusamy, D. Sivasubramanian, P. Sreekanth, V. Gandhiraj, R. Philip, G.M. Bhalerao, RSC Adv. 5, 80756–80765 (2015)CrossRefGoogle Scholar
  28. 28.
    M.S. Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14(17), 955–957 (1989)CrossRefGoogle Scholar
  29. 29.
    Q. Chen, E.H. Sargent, N. Leclerc, and A.-J. Attias, Appl. Opt. 42, 7235–7241 (2003)CrossRefGoogle Scholar
  30. 30.
    T.-H. Park, N.-W. Park, J. Kim, W.-Y. Lee, J.-H. Koh, S.-K. Lee, J. Alloys Compd. 638, 83–87 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Singh, S. Kumar, R. Das, P.K. Sahoo, RSC Adv. 5, 88767–88772 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Anand, S.R. Krishnan, R. Podila, S.S.S. Sai, A.M. Raocde, R. Philip, Phys. Chem. Chem. Phys. 16, 8168–8177 (2014)CrossRefGoogle Scholar
  33. 33.
    A.H. Reshak, S. Auluck, RSC Adv. 7, 14752–14760 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Agrawal, R.K. Saroj, T.A. Dar, P. Baraskar, P. Sen, S. Dhar, J. Appl. Phys. 122, 195303 (2017)CrossRefGoogle Scholar
  35. 35.
    Y.T. Fei, L. Ying, K.J. Jie, Z.P. Yu, S.B. Quan, Z. Kun, Y.S. Shen, Z.X. Hui, Chin. Phys. Lett. 32(7), 077801 (2015)CrossRefGoogle Scholar
  36. 36.
    N.K.M.N. Srinivas, S.V. Rao, D.V.G.L.N. Rao, B.K. Kimball, M. Nakashima, B.S. Decristofano, D.N. Rao, J. Porphyri. Phthalocyn. 5, 549–554 (2001)CrossRefGoogle Scholar
  37. 37.
    E.W. Van Stryland, Y.Y. Wu, D.J. Hagan, M.J. Soileau, K. Mansour, J. Opt. Soc. Am. B 5(9), 1980–1988 (1988)CrossRefGoogle Scholar
  38. 38.
    L. Yan, Y. Xiong, J. Si, X. Sun, W. Yi, X. Hou, Opt. Express 22(26), 31836–31841 (2014)CrossRefGoogle Scholar
  39. 39.
    K.M. Nashold, D.P. Walter, J. Opt. Soc. Am. B 12(7), 1228–1237 (1995)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    L.W. Tutt, T.F. Boggess, Prog. Quant. Electron. 17, 299–338 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, East Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations