Advertisement

Thermoelectric properties of Al-doped zinc oxide-based ceramics sintered at high temperature under different atmospheres

  • Mati UllahEmail author
  • Wang Chunlei
  • Wenbin Su
  • Dakang Liu
  • Arif Zaman
Article
  • 127 Downloads

Abstract

The conventional Solid-state reaction (SSR) method was used to synthesize compositions of (Zn1−xAlx)O, with x varying from 0.005 to 0.05 respectively. The as-prepared compositions were sintered in the air as well as in an argon atmosphere at 1400 °C, and their phases, microstructures and thermoelectric properties were investigated. Single-phase ceramics were formed for the composition with x ≤ 0.02. However, some unknown phases () developed along with the parent phases for x ≥ 0.01 due to an over solubility limit of Al in Zn sintered in the air atmosphere. The highest Power factor (PF) for both air and an argon atmosphere were obtained 8.886 × 10−4 WK−2 m−1 and 5.389 × 10−4 WK−2 m−1 while, the lowest electrical resistivity (ρ) for the composition with x = 0.02 i.e. (Zn0.98Al0.02)O were obtained 7.674 mΩ cm and 1.430 mΩ cm at 702 °C respectively. The PF obtained in the air sintered atmosphere for the composition with x = 0.02 is 1.648 times higher than for the same composition sintered in an argon atmosphere. The ρ for the composition with x = 0.02 sintered in an argon atmosphere is 4.6202 times lowered for the same composition (x = 0.02) sintered in the air atmosphere.

Notes

Acknowledgements

The authors acknowledge the support extended by the key laboratory of advanced materials and state key laboratory of crystal materials, Shandong University. The financial support provided by the Government of People’s Republic of China under Fundamental Research Grant (No. 2015TB019) is also highly acknowledged. The help of Professor Ikram Ullah Khan for English language improvement and healthy discussion is also highly acknowledged.

References

  1. 1.
    R. Radhakrishnan., in A. Review of, “Thermoelectrics Handbook, Macro to Nano, ed D.M. Rowe (CRC Press, Baco Raton, 2008).  https://doi.org/10.1080/10426910802135819 CrossRefGoogle Scholar
  2. 2.
    D.C. Look. Mater. Sci. Eng 80(1–3), 383 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72(12), 126501 (2009)CrossRefGoogle Scholar
  4. 4.
    W.T. Chang, Y.C. Chen, R.C. Lin, C.C. Cheng, K.S. Kao, Y.C. Huang, Curr. Appl. Phys. 11(1), S333 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B 132(1), 334 (2008)CrossRefGoogle Scholar
  6. 6.
    F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira. Sens. Actuators B: Chem. 25(1–3), 843 (1995)CrossRefGoogle Scholar
  7. 7.
    A. Manekkathodi, M.Y. Lu. C.W. Wang, L.J. Chen. Adv. Mater. 22(36), 4059 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary. J. Eur. Ceram. Soc. 31(15), 2957 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, R. Martins. Appl. Phys. A. 96(1), 197 (2009)CrossRefGoogle Scholar
  10. 10.
    X.D. Li, T.P. Chen, P. Liu, Y. Liu, K.C. Leong, Opt. Express 21(12), 14131 (2013)CrossRefGoogle Scholar
  11. 11.
    Ü Özgür, X. Gu, S. Chevtchenko, J. Spradlin, S.J. Cho, H. Morkoç, F.H. Pollak, H.O. Everitt, B. Nemeth, J.E. Nause, J. Electron. Mater. 35(4), 550 (2006)CrossRefGoogle Scholar
  12. 12.
    D.G. Thomas. J. Phys. Chem. Solids 15(1–2), 86 (1960)CrossRefGoogle Scholar
  13. 13.
    Y. Chen, D.M. Bagnall, H.J. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao. J. Appl. Phys. 84(7), 3912 (1998)CrossRefGoogle Scholar
  14. 14.
    D.C. Reynolds, D.C. Look, B. Jogai, Solid State Commun. 99(12), 873 (1996)CrossRefGoogle Scholar
  15. 15.
    X. Qu, W. Wang, S. Lv, D. Jia, Solid State Commun. 151(4), 332 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Park, J.W. Choi, S.J. Kim, G.H. Kim, Y.S. Cho. J. Alloy. Compd. 485(1–2), 532 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Ohta, W.S. Seo, K. Koumoto. J. Am. Ceram. Soc. 79(8), 2193 (1996)CrossRefGoogle Scholar
  18. 18.
    R.G. Gordon. Mater. Res. Bull. 25(8), 52 (2000)CrossRefGoogle Scholar
  19. 19.
    B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, L.M. Mei, Sci. Rep. 6, 23044 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Babar Shabbir, C. Huang, Y. Yao, S. Ma, T.H. Dou, Johansen, H. Hosono, X. Wang, Phys. Rev. Mater. 1, 044805 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Babar Shabbir, N. Ullah, M. Hassan, N.A. Irfan, Khan. J. Supercon. Nov. Magn. 24(5), 1521 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Shabbir, M.I. Malik, N.A. Khan. J. Supercon. Nov. Magn. 24(6), 1977 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Ullah, A. Wen B. Su, A.S. Manan, A. Abid, Shah, Z. Yao, Ceram. Int. 44(15), 17873 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Ullah, W. Chunlei, A. WenBin Su, A.S. Manan, Ahmad, J.Mater. Sci: Mater. Electron. 1–6 (2019).  https://doi.org/10.1007/s10854-019-00775-6 CrossRefGoogle Scholar
  25. 25.
    Z.H. Zheng, P. Fan, G.X. Liang, P.J. Liu, P.J. Cao, D.P. Zhang, Z.K. Cai, X. Ou, C.Y. Lai, Mater. Sci. Forum 743, 138 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. J. Semicond. 37(9), 092002 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Yang, K.C. Pradel, Q. Jing, J.M. Wu, F. Zhang, Y. Zhou, ACS Nano 6(8), 6984 (2012)CrossRefGoogle Scholar
  28. 28.
    K. Park, H.K. Hwang, J.W. Seo, W. S. Seo., Energy 54, 139 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Ohtaki, K. Araki, K. Yamamoto. J. Electron. Mater. 38(7), 1234 (2009)CrossRefGoogle Scholar
  30. 30.
    D. Bérardan, C. Byl, N. Dragoe. J. Am. Ceram. Soc. 93(8), 2352 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Ullah, C.L. Wang, W.B. Su, A. Zaman, I. Ullah, J.Z. Zhai. J. Mater. Sci: Mater. Electron: 29(11), 9555 (2018)Google Scholar
  32. 32.
    P. Zhang, R.Y. Hong, Q. Chen, W.G. Feng, D. Badami. J. Mater. Sci. 25(2), 678 (2014)Google Scholar
  33. 33.
    A. Monshi, M.R. Foroughi, M.R. Monshi, J. World, Nano Sci. Eng. (WJNSE). 2(3), 154 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Results Phys. 9, 1301 (2018)CrossRefGoogle Scholar
  35. 35.
    S. Hamdelou, K. Guergouri, L. Arab. Appl. Nanosci. 5(7), 817 (2015)CrossRefGoogle Scholar
  36. 36.
    N. Kamarulzaman, M.F. Kasim, R. Rusdi. Nanoscale Res. Lett. 10(1), 346 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Sun, H.ZhangY. Liu, J. Guo, Z. Li. J. Adv. Ceram. 5(4), 329 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Zhu, Q. Liu, J. Wang, Y. Zhou, W. Ye, F. Wang. J. Mater. Sci. 27(1), 818 (2016)Google Scholar
  39. 39.
    H. Li, H. Qiu, M.Yu,X. Chenb. Mater. Chem. Phys. 126(3), 866 (2011)CrossRefGoogle Scholar
  40. 40.
    T. Norby, J. Korean Ceram. Soc. 47(1), 19 (2010)CrossRefGoogle Scholar
  41. 41.
    M.H. Hong, C.S. Park, W.S. Seo, Y.S. Lim, J.K. Lee, H.H. Park. J. Nanomater. (2013).  https://doi.org/10.1155/2013/131537 CrossRefGoogle Scholar
  42. 42.
    L. Han, N.V. Nong, L.T. Hung, T. Holgate, N. Pryds, M. Ohtaki, S. Linderoth. J. Alloys Compd. 555, 291 (2013)CrossRefGoogle Scholar
  43. 43.
    J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, K. Watari, J. Eur. Ceram. Soc. 29(8), 1413 (2009)CrossRefGoogle Scholar
  44. 44.
    T. Tian, L. Cheng, L. Zheng, J. Xing, H. Gu, S. Bernik, H. Zeng, W. Ruan, K. Zhao, G. Li, Acta. Mater. 119, 136 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Ullah, C.L. Wang, W.B. Su, J. Li, A. Manan, I. Ullah, M. Idrees, Mater. Sci. Semicond. Process. 87, 202 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mati Ullah
    • 1
    Email author
  • Wang Chunlei
    • 1
    • 2
  • Wenbin Su
    • 1
  • Dakang Liu
    • 1
  • Arif Zaman
    • 3
  1. 1.School of PhysicsShandong University, JinanJinanPeople’s Republic of China
  2. 2.MOE State Key Laboratory of Crystal MaterialsShandong University, JinanJinanPeople’s Republic of China
  3. 3.Department of PhysicsAbdul Wali Khan University MardanMardanPakistan

Personalised recommendations