Advertisement

One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor

  • Zhao Wang
  • Hong Yan YueEmail author
  • Ze Min Yu
  • Fei Yao
  • Xin Gao
  • En Hao Guan
  • Hong Jie Zhang
  • Wan Qiu Wang
  • Shan Shan Song
Article
  • 43 Downloads

Abstract

MoSe2 nanosheets spheres (MoSe2·NSs) were synthesized directly on the surface of reduced graphene oxide (rGO) nanosheets (MoSe2–rGO) using a simple one-pot hydrothermal approach, which was used for supercapacitor. The synergistic effect of the MoSe2·NSs and the highly conductive rGO network endows the MoSe2–rGO composite excellent electrochemical performance. The effect of the content of graphene in the composite were investigated in details. The optimal electrode exhibits a high specific capacitance of 814.4 F g−1 at 1 A g−1 in 2 M KOH. Moreover, the assembled supercapacitor delivers a high specific capacitance of 215.7 F g−1 at 1 A g−1 and retains 81.7% of the initial capacitance at 10 A g−1 after 5000 cycles. It suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.

Notes

Acknowledgements

This work is supported by the fundamental research foundation for University of Heilongjiang province (Grant No. LGYC2018JQ012), the Innovative Talent Fund of Harbin city (Grant No. 2016RAQXJ185).

Supplementary material

10854_2019_1174_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2800 KB)

References

  1. 1.
    J.-H. Choi, C. Lee, S. Cho, G. Moon, B.-S. Kim, H. Chang, H.D. Jang, High capacitance and energy density supercapacitor based on biomass-derived activated carbons with reduced graphene oxide binder. Carbon 132, 16–24 (2018).  https://doi.org/10.1016/j.carbon.2018.01.105 CrossRefGoogle Scholar
  2. 2.
    M. Liu, Z. Wang, J. Liu, G. Wei, J. Du, Y. Li, C. An, J. Zhang, Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A 5, 1035–1042 (2017).  https://doi.org/10.1039/c6ta08206h CrossRefGoogle Scholar
  3. 3.
    V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application. Electrochim. Acta 265, 514–522 (2018).  https://doi.org/10.1016/j.electacta.2018.01.075 CrossRefGoogle Scholar
  4. 4.
    W. Yang, L. He, X. Tian, M. Yan, H. Yuan, X. Liao, J. Meng, Z. Hao, L. Mai, Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small (2017).  https://doi.org/10.1002/smll.201700639 Google Scholar
  5. 5.
    C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater.Chem. 22, 19161–19167 (2012).  https://doi.org/10.1039/c2jm33177b CrossRefGoogle Scholar
  6. 6.
    B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J.-B. Xu, X.Z. Fu, R. Sun, C.-P. Wong, NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochim. Acta 192, 205–215 (2016).  https://doi.org/10.1016/j.electacta.2016.01.211 CrossRefGoogle Scholar
  7. 7.
    S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard, X.L. Zhang, B. Cao, Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5, 1700659 (2018).  https://doi.org/10.1002/advs.201700659 CrossRefGoogle Scholar
  8. 8.
    H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density. Nanotechnology 28, 445401 (2017).  https://doi.org/10.1088/1361-6528/aa8948 CrossRefGoogle Scholar
  9. 9.
    S. Mouri, W. Zhang, D. Kozawa, Y. Miyauchi, G. Eda, K. Matsuda, Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 9, 6674–6679 (2017).  https://doi.org/10.1039/c7nr01598d CrossRefGoogle Scholar
  10. 10.
    J. Luo, P. Xu, D. Zhang, L. Wei, D. Zhou, W. Xu, J. Li, D. Yuan, Synthesis of 3D-MoO2 microsphere supported MoSe2 as an efficient electrocatalyst for hydrogen evolution reaction. Nanotechnology 28, 465404 (2017).  https://doi.org/10.1088/1361-6528/aa8947 CrossRefGoogle Scholar
  11. 11.
    B. Zheng, Y. Chen, F. Qi, X. Wang, W. Zhang, Y. Li, X. Li, 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 4, 025092 (2017).  https://doi.org/10.1088/2053-1583/aa6e65 CrossRefGoogle Scholar
  12. 12.
    S. Mao, Z. Wen, S. Ci, X. Guo, K.K. Ostrikov, J. Chen, Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11, 414–419 (2015).  https://doi.org/10.1002/smll.201401598 CrossRefGoogle Scholar
  13. 13.
    K. Palanisamy, Y. Kim, H. Kim, J.M. Kim, W.S. Yoon, Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J. Power Sour. 275, 351–361 (2015).  https://doi.org/10.1016/j.jpowsour.2014.11.001 CrossRefGoogle Scholar
  14. 14.
    H. Tang, K. Dou, C.C. Kaun, Q. Kuang, S. Yang, MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater. Chem. A 2, 360–364 (2014).  https://doi.org/10.1039/c3ta13584e CrossRefGoogle Scholar
  15. 15.
    L. Ma, L. Xu, X. Zhou, X. Xu, L. Zhang, Synthesis of a hierarchical MoSe2/C hybrid with enhanced electrochemical performance for supercapacitors. RSC Adv. 6, 91621–91628 (2016).  https://doi.org/10.1039/c6ra16157j CrossRefGoogle Scholar
  16. 16.
    S.K. Balasingam, J.S. Lee, Y. Jun, Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 44, 15491–15498 (2015).  https://doi.org/10.1039/c5dt01985k CrossRefGoogle Scholar
  17. 17.
    Y.P. Gao, K.J. Huang, H.L. Shuai, L. Liu, Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater. Lett. 209, 319–322 (2017).  https://doi.org/10.1016/j.matlet.2017.08.044 CrossRefGoogle Scholar
  18. 18.
    S.S. Karade, B.R. Sankapal, Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: symmetric all-solid-state supercapacitor. J. Electroanal. Chem. 802, 131–138 (2017).  https://doi.org/10.1016/j.jelechem.2017.08.017 CrossRefGoogle Scholar
  19. 19.
    H. Li, L. Chen, Y. Zhang, X. Ji, S. Chen, H. Song, C. Li, H. Tang, Synthesis of MoSe2/reduced graphene oxide composites with improved tribological properties for oil-based additives. Cryst. Res. Technol. 49, 204–211 (2014).  https://doi.org/10.1002/crat.201300317 CrossRefGoogle Scholar
  20. 20.
    J. Sha, C. Gao, S.K. Lee, Y. Li, N. Zhao, J.M. Tour, Preparation of three-dimensional graphene foams using powder metallurgy templates. ACS Nano 10, 1411–1416 (2016).  https://doi.org/10.1021/acsnano.5b06857 CrossRefGoogle Scholar
  21. 21.
    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).  https://doi.org/10.1038/nmat3001 CrossRefGoogle Scholar
  22. 22.
    K. Chen, C. Li, Z. Chen, L. Shi, S. Reddy, H. Meng, Q. Ji, Y. Zhang, Z. Liu, Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Res. 9, 249–259 (2016).  https://doi.org/10.1007/s12274-016-1013-1 CrossRefGoogle Scholar
  23. 23.
    H.J. Qiu, Y. Guan, P. Luo, Y. Wang, Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron. 89, 85–95 (2017).  https://doi.org/10.1016/j.bios.2015.12.029 CrossRefGoogle Scholar
  24. 24.
    S. Mao, G. Lu, J. Chen, Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015).  https://doi.org/10.1039/c4nr06609j CrossRefGoogle Scholar
  25. 25.
    H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011).  https://doi.org/10.1021/jp1120299 CrossRefGoogle Scholar
  26. 26.
    L. Bao, T. Li, S. Chen, C. Peng, L. Li, Q. Xu, Y. Chen, E. Ou, W. Xu 3D Graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small (2017).  https://doi.org/10.1002/smll.201602077 Google Scholar
  27. 27.
    E.G. Da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014).  https://doi.org/10.1002/aenm.201301380 CrossRefGoogle Scholar
  28. 28.
    K.J. Huang, J.Z. Zhang, Y. Fan, Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater. Lett. 152, 244–247 (2015).  https://doi.org/10.1016/j.matlet.2015.03.130 CrossRefGoogle Scholar
  29. 29.
    S.K. Balasingam, J.S. Lee, Y. Jun, Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications. Dalton Trans. 45, 9646–9653 (2016).  https://doi.org/10.1039/c6dt00449k CrossRefGoogle Scholar
  30. 30.
    J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013).  https://doi.org/10.1016/j.carbon.2013.07.055 CrossRefGoogle Scholar
  31. 31.
    X. Liu, J.Z. Zhang, K.-J. Huang, P. Hao, Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem. Eng. J. 302, 437–445 (2016).  https://doi.org/10.1016/j.cej.2016.05.074 CrossRefGoogle Scholar
  32. 32.
    Y. Liu, T. Gao, H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim. Acta 229, 239–252 (2017).  https://doi.org/10.1016/j.electacta.2017.01.142 CrossRefGoogle Scholar
  33. 33.
    J. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.T.F. Rodrigues, K. Kalaga, P. Dong, P. Xiao, Y. Zhang, R. Vajtai, P.M. Ajayan, 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim. Acta 176, 103–111 (2015).  https://doi.org/10.1016/j.electacta.2015.06.138 CrossRefGoogle Scholar
  34. 34.
    S. Sankar, A.I. Inamdar, H. Im, S. Lee, D.Y. Kim, Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceram. Int. 44, 17514–17521 (2018).  https://doi.org/10.1016/j.ceramint.2018.05.207 CrossRefGoogle Scholar
  35. 35.
    J.K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018).  https://doi.org/10.1002/adma.201705789 CrossRefGoogle Scholar
  36. 36.
    J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo, X. Wang, Q. Wu, L. Yang, Y. Ma, Z. Hu, Porous 3D few-layer graphene-like carbon forultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017).  https://doi.org/10.1002/adma.201604569 CrossRefGoogle Scholar
  37. 37.
    X. Gao, H. Yue, E. Guo, L. Yao, X. Lin, B. Wang, E. Guan, D. Bychanok, In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode. J Mater. Sci. Mater. Electron. 28, 17939–17947 (2017).  https://doi.org/10.1007/s10854-017-7736-2 CrossRefGoogle Scholar
  38. 38.
    S. Ahmed, M. Rafat, Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Mater. Res. Express (2017)  https://doi.org/10.1088/2053-1591/aaa232 Google Scholar
  39. 39.
    S. Ahmed, M. Rafat, Effect of lithium and sodium salt on the performance of Nb2O5/rGO nanocomposite based supercapacitor. Mater. Res. Express (2018).  https://doi.org/10.1088/2053-1591/aaace2 Google Scholar
  40. 40.
    A. Sultan, R. Mohd, M.K. Singh, S. Hashmi, A Free-standing, flexible PEDOT-PSS film and its nanocomposites with graphene nano-platelets as electrodes for quasi-solid-state supercapacitors. Nanotechnology (2018).  https://doi.org/10.1088/1361-6528/aad0b8 Google Scholar
  41. 41.
    Y. Yang, F. Huilong, R. Gedeng, X. Changsheng, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163–8168 (2014).  https://doi.org/10.1002/adma.201402847 CrossRefGoogle Scholar
  42. 42.
    W. Lu, M. Arif, G. Duan, S. Chen, X. Liu, A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles. J. Power Sour. 355, 53–61 (2017).  https://doi.org/10.1016/j.jpowsour.2017.04.054 CrossRefGoogle Scholar
  43. 43.
    P. Hui, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet arrays and nitrogen-doped carbon nanosheet. Acs Sustaina Chem Eng 5, 59514–59563 (2017).  https://doi.org/10.1021/acssuschemeng.7b00729 Google Scholar
  44. 44.
    S.N. Tiruneh, B. Kang, S.H. Kwag, Y.H. Lee, M.S. Kim, D.H. Yoon, Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem. Eur. J. 24, 3263–3270 (2018).  https://doi.org/10.1002/chem.201705445 CrossRefGoogle Scholar
  45. 45.
    K. Ghosh, C.Y. Yue, Development of 3D MoO3/graphene aerogel and sandwich-type polyaniline decorated porous MnO2-graphene hybrid film based high performance all-solid-state asymmetric supercapacitors. Electrochim. Acta 276, 47–63 (2018).  https://doi.org/10.1016/j.electacta.2018.04.16 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhao Wang
    • 1
  • Hong Yan Yue
    • 1
    Email author
  • Ze Min Yu
    • 1
  • Fei Yao
    • 2
  • Xin Gao
    • 1
  • En Hao Guan
    • 1
  • Hong Jie Zhang
    • 1
  • Wan Qiu Wang
    • 1
  • Shan Shan Song
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of Materials Design and InnovationUniversity at BuffaloBuffaloUSA

Personalised recommendations