Advertisement

Two step method for preparing TiO2/Ag/rGO heterogeneous nanocomposites and its photocatalytic activity under visible light irradiation

  • Tian Tang
  • Tao WangEmail author
  • Yang Gao
  • Huan Xiao
  • JiaHui Xu
Article
  • 15 Downloads

Abstract

Because the Fermi level of precious metal silver and titanium dioxide are different, the contact between the two can form a Schottky barrier, which is beneficial to reduce the recombination rate of photogenerated electron pairs. The unique surface plasmon resonance effect of the silver can promote the absorption of light by titanium dioxide, thereby increasing the utilization of light by the composite. Graphene not only has excellent electrical conductivity, but also has a large specific surface area and good adsorption capacity, and is considered to be the most potential carrier. In this study, we introduced silver and graphene into TiO2 nanowires, and prepared TiO2/Ag/rGO heterogeneous nanocomposites nanocomposites. Firstly, the morphology of titanium dioxide was modified by high-voltage electrospinning technology to increase its specific surface area and increase its active site involved in photocatalysis. Then, using hydrothermal method combines the good characteristics of reduced graphene oxide (rGO) and precious metal silver, enhances the transfer of photogenerated electrons, and prolongs the lifetime of photogenerated electron–hole pairs. Thereby, the photocatalytic activity of the composite material is improved, so the prepared TiO2/Ag/rGO heterogeneous nanocomposites nanocomposites can degrade the rhodamine B solution by 92.9% in 80 min.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Higher Education Institutions of Gansu Province of China, Graduate Advisor Scientific Research Project of Gansu Province Education Department (Grant No. 1001-07), the Foundations of Northwest Normal University (Grant No. NWNU-LKQN-10-8 and NWNU-LKQN-09-8).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    H.M. Shi, M. Zhou, D.F. Song, X.J. Pan, J.C. Fu, J.Y. Zhou, S.Y. Ma, T. Wang, Ceram. Int. 40, 10383–10393 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Choi, H. Kim, G. Moon, S. Jo, W. Choi, ACS Catal. 6, 821–828 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Pant, P.S. Saud, M. Park, S.J. Park, H.Y. Kim, J. Alloys Compd. 671, 51 (2016)CrossRefGoogle Scholar
  4. 4.
    G.M. Wang, H.Q. Feng, A. Gao, Q. Hao, W.H. Jin, X. Peng, W. Li, G.S. Wu, P.K. Chu, ACS Appl. Mater. Interfaces 8, 24509–24516 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani, H. Irie, J. Phys. Chem. C 116, 17458–17463 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Xu, X. Sun, H. Tu, Q. Jia, H. Gong, J. Guan, Appl. Catal. B 184, 309–319 (2016)CrossRefGoogle Scholar
  7. 7.
    J.X. Wei, H.M. Shi, M. Zhou, D.F. Song, Y. Zhang, X.J. Pan, J.Y. Zhou, T. Wang, Appl. Catal. A 499, 101 (2015)CrossRefGoogle Scholar
  8. 8.
    E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Appl. Surf. Sci. 353, 865–872 (2015)CrossRefGoogle Scholar
  9. 9.
    J.G. Wang, P.H. Rao, W. An, J.L. Xu, Y. Men, Appl. Catal. B 195, 141–148 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z.M. Zhang, Ceram. Int. 43.3, 3118–3126 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Roy, Y. Sohn, D. Pradhan, ACS Nano 7, 2532–2540 (2013)CrossRefGoogle Scholar
  12. 12.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638–641 (2008)CrossRefGoogle Scholar
  13. 13.
    X.F. Wang, T.Y. Li, R. Yu, H.G. Yu, J.G. Yu, J. Mater. Chem. A 4, 8682–8689 (2016)CrossRefGoogle Scholar
  14. 14.
    F.Q. Gao, Y. Yang, T.H. Wang, Chem. Eng. J. 270, 418 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Faraji, N. Mohaghegh, Surf. Coat. Technol. 288, 144 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.M. Zhao, J. Sun, S.M. Xing, D.J. Liu, G.J. Zhang, L.J. Bai, B.L. Jiang, J. Alloys Compd. 679, 88 (2016)CrossRefGoogle Scholar
  17. 17.
    Q. Chen, M. Zhou, Z.M. Zhang, T. Tang, T. Wang, J. Mater. Sci-Mater. Electron. 28, 9416–9422 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Raghavan, S. Thangavel, G. Venugopal, Mater. Sci. Semicond. Process. 30, 321 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Bian, Y. Qu, R. Fazal, X. Li, N. Sun, L.Q. Jing, J. Phys. Chem. C 120, 11831–11836 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Ling, G.Z. Liao, Y.H. Xie, J. Yin, J.Y. Huang, W.H. Feng, L.S. Li, J. Photochem. Photobiol. A 329, 280 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Wang, J.X. Wei, H.M. Shi, M. Zhou, Y. Zhang, Q. Chen, Z.M. Zhang, Physica E 86, 103–110 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Ziarati, A. Badiei, R. Luque, W.Y. Ouyang, J. Mater. Chem. A 6, 8962–8968 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Ziarati, A. Badiei, R. Luque, Appl. Catal. B 238, 177–183 (2018)CrossRefGoogle Scholar
  24. 24.
    E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Appl. Surf. Sci. 353, 865 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Liu, R. Inde, M. Nishikawa, X. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, ACS Nano 8, 7229–7238 (2014)CrossRefGoogle Scholar
  26. 26.
    O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47, 3280 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Ziarati, A. Badiei, R. Luque, Appl. Catal. B 240, 72–78 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tian Tang
    • 1
  • Tao Wang
    • 1
    • 2
    Email author
  • Yang Gao
    • 1
  • Huan Xiao
    • 1
  • JiaHui Xu
    • 1
  1. 1.Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu province, College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China
  2. 2.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations