Advertisement

Strontium-substituted La0.75Ba0.25−xSrxFeO3 (x = 0.05, 0.10 and 0.15) perovskite: dielectric and electrical studies

  • F. B. AbdallahEmail author
  • A. Benali
  • S. Azizi
  • M. Triki
  • E. Dhahri
  • M. P. F. Graça
  • M. A. Valente
Article
  • 212 Downloads

Abstract

La0.75Ba0.25−xSrxFeO3 perovskite compounds with different strontium concentrations were synthesized via the sol–gel method. X-ray diffraction (XRD) data indicated that all obtained samples crystallize in the orthorhombic structure with the Pnma space group. The dielectric properties of these samples, using complex impedance spectroscopy technique have been carried out as function of frequency and temperature as well. An adequate electrical equivalent circuit has been used to evaluate the grain and grain boundary contributions in complex impedance results. Furthermore, the AC conductivity spectra obey to Jonscher’s universal power law. The behavior of the exponent “S” suggests that the conduction mechanism follows the overlapping large polaron tunneling (OLPT) process for x = 0.05, while for both compounds x = 0.10 and x = 0.15 the non-overlapping small polaron tunneling (NSPT) is the applicable model. The behavior of ε″ as a function of both frequency and temperature has been described by Giuntini model.

Notes

References

  1. 1.
    M.C. Carotta, M.A. Butturi, G. Martinelli, Y. Sadaoka, P. Nunziante, E. Traversa, Sens. Actuators B 44, 590–594 (1997)CrossRefGoogle Scholar
  2. 2.
    Z.X. Wei, Y.Q. Xu, H.Y. Liu, C.W. Hu, J. Hazard. Mater. 165, 1056–1061 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Huang, H.Y. Lee, J.B. Goodenough, J. Electrochem. Soc. 145, 3220 (1999)CrossRefGoogle Scholar
  4. 4.
    S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Int. J. Hydrog. Energy 37, 10451–10456 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Xiao, C. Xue, P. Song, J. Li, Q. Wang, Appl. Surf. Sci. 337, 65–71 (2015)CrossRefGoogle Scholar
  6. 6.
    E.A. Tugova, V.F. Popova, I.A. Zvereva, V.V. Gusarov, Phys. Chem. 32, 674–676 (2006)Google Scholar
  7. 7.
    A. Cyza, A. Kopia, Ł Cieniek, J. Kusinski, Mater. Today Proc. 3, 2707–2712 (2016)CrossRefGoogle Scholar
  8. 8.
    P.J. Yao, J. Wang, W.L. Chu, Y.W. Hao, J. Mater. Sci. 48, 441–450 (2013)CrossRefGoogle Scholar
  9. 9.
    H.C. Wang, C.L. Wang, J.L. Zhang, W.B. Su, J. Liu, M.L. Zhao, N. Yin, Y.G. Lv, L.M. Mei, Curr. Appl. Phys. 10, 866–870 (2010)CrossRefGoogle Scholar
  10. 10.
    F. He, X. Li, K. Zhao, Z. Huang, G. Wei, H. Li, Fuel 108, 465–473 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Chern, W.K. Hsieh, M.F. Tai, K.S. Hsung, Phys. Rev. B 58, 1252 (1998)CrossRefGoogle Scholar
  12. 12.
    L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Mater.Chem. Phys. 125, 305–308 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Md, B.K. Masud, Chaudhuri, H.D. Yang, J. Phys. D Appl. Phys. 44, 255403 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, S.L. Pi, Y. Zhang, J. Magn. Magn. Mater. 322, 3381 (2010)CrossRefGoogle Scholar
  15. 15.
    F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, K. Nomenyo, G. Lerondel, J. Mater. Sci. Mater. Electron. 30, 3349–3358 (2019)CrossRefGoogle Scholar
  16. 16.
    F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Superlattices Microstruct. 117, 260 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 4 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Benali, M. Bejar, E. Dhahri, M. Sajieddine, M.P.F. Graça, M.A. Valente, Mater. Chem. Phys. 149–150 (2015) 467–472CrossRefGoogle Scholar
  19. 19.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188–201 (2005)CrossRefGoogle Scholar
  20. 20.
    H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Chem. Phys. Lett. 640, 77–81 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Johnson, ZPlot, ZView Electrochemical Impedance Software, Version 2.3b (Scribner Associates, Inc., North Carolina, 2000)Google Scholar
  24. 24.
    A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)Google Scholar
  25. 25.
    K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Ghosh, Phys. Rev. B 42, 1388 (1990)CrossRefGoogle Scholar
  27. 27.
    S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931 (1993)CrossRefGoogle Scholar
  28. 28.
    A.R. Long, Adv. Phys. 31, 553 (1982)CrossRefGoogle Scholar
  29. 29.
    I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)CrossRefGoogle Scholar
  30. 30.
    D.K. Modak, U.K. Mandal, M. Sadhukhan, B.K. Chaudhuri, T. Komatsu, J. Mater. Sci. 36, 2539–2545 (2001)CrossRefGoogle Scholar
  31. 31.
    M. Tan, Y. Köseoǧlu, F. Alan, E. Şentürk, J. Alloys Compd. 509, 9399–9405 (2011)CrossRefGoogle Scholar
  32. 32.
    S.R. Elliot, Adv. Phys. 36, 135–217 (1987)CrossRefGoogle Scholar
  33. 33.
    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943 (2016)CrossRefGoogle Scholar
  35. 35.
    A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, ISRN Ceram. (2012).  https://doi.org/10.5402/2012/854831 Google Scholar
  36. 36.
    N.K. Singh, P. Kumar, R. Rai, J. Alloys. Compd. 509, 2957 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)CrossRefGoogle Scholar
  38. 38.
    J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P.J. Houenou, J. Non-Cryst. Solids 45, 57 (1981)CrossRefGoogle Scholar
  39. 39.
    N. Weslati, I. Chaabane, A. Bulou, F. Hlel, Phys. B 441, 42–46 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Ben Gzaiel, A. Oueslati, F. Hlel, M. Gargouri, Phys. E 83, 405 (2016)CrossRefGoogle Scholar
  41. 41.
    M.A.M. Seyam, Appl. Surf. Sci. 181, 128–138 (2001)CrossRefGoogle Scholar
  42. 42.
    S.R. Elliott, Phil. Mag. 36, 1291 (1977)CrossRefGoogle Scholar
  43. 43.
    K. Prabakar, S.A.K. Narayandass, D. Mangalaraj, Cryst. Res. Technol. 37, 1094–1103 (2002)CrossRefGoogle Scholar
  44. 44.
    P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, J. Non-Cryst. Solids 351, 583–594 (2005)CrossRefGoogle Scholar

Copyright information

© © Springer Science+Business Media, LLC, part of Springer Nature 2019 2019
corrected publication 2019

Authors and Affiliations

  • F. B. Abdallah
    • 1
    Email author
  • A. Benali
    • 1
    • 2
  • S. Azizi
    • 1
    • 3
  • M. Triki
    • 1
  • E. Dhahri
    • 1
  • M. P. F. Graça
    • 2
  • M. A. Valente
    • 2
  1. 1.Laboratoire de Physique Appliquée, Faculté des SciencesUniversité de SfaxSfaxTunisia
  2. 2.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal
  3. 3.Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis (ENSIT, Ex ESSTT)Université de TunisTunisTunisia

Personalised recommendations