Advertisement

SiNx films and membranes for photonic and MEMS applications

  • Wenjuan XiongEmail author
  • Haojie Jiang
  • Tingting Li
  • Peng Zhang
  • Qing Xu
  • Xuewei Zhao
  • Guilei Wang
  • Yaodong Liu
  • Ying Luo
  • Zhihua Li
  • Junfeng Li
  • Jinzhong Yu
  • Zhao Chao
  • Wenwu Wang
  • Henry H. RadamsonEmail author
Article
  • 17 Downloads

Abstract

This work presents a novel process to form SiNx films and process for membranes with excellent mechanical properties for micro-electro-mechanical systems application as well as integration as IR waveguide for photonic application. The SiNx films were fabricated in SiNgen apparatus which is a single wafer chamber equipment compared to conventional low pressure chemical vapor deposition furnace process. The films showed low stress, good mechanical properties, but the synthesis also eradicates the issues of particle contamination. Through optimizing of the growth parameters and post annealing profile, low stress (40 Mpa) SiNx film could be finally deposited when annealing temperature rose up to 1150 °C. The stress relaxation is a result of more Si nano-crystalline which was formed during annealing, according to the FTIR results. The mechanical properties, Young’s modulus and hardness, were 210 Gpa and 20 Gpa respectively. For the waveguide application, a stack of three layers, SiO2/SiNx/SiO2 was formed where the optimized layer thicknesses were used for minimum optical loss according to simulation feedback. After deposition of the first two layers in the stack, the samples were annealed in range of 900–1150 °C in order to release the stress. Chemical mechanical polish technique was applied to planarize the nitride layer prior to the oxide cladding layer. Such wafers can be used to bond to Si or Ge to manufacture advanced substrates.

Notes

References

  1. 1.
    J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, P.J. McWhorter, Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, in Proceedings of the IEEE international conference on electron device meeting, technical digest, Washington, DC, USA, December 10–13, 1995, pp. 609–612Google Scholar
  2. 2.
    H.H. Radamson, L. Thylen, Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group 1V Elements (Elsevier, Amsterdam, 2014)Google Scholar
  3. 3.
    H.H. Radamson, J. Luo, E. Simeon, Z. Chao Past, Present and Future of CMOS, (Elsevier, Amsterdam, 2018)Google Scholar
  4. 4.
    A. Kshirsagar, P. Nyaupane, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl. Surf. Sci. 257, 5052–5058 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Karouta, K. Vora, J. Tian, C. Jagadish, Structural compositional and optical properties of PECVD silicon nitride layers. J. Appl. Phys. D 45, 968–975 (2001)Google Scholar
  6. 6.
    P. Temple-Boyer, L. Jalabert, L. Masarotto, J.L. Alay, J.R. Morante, Properties of nitrogen doped silicon films deposited by low-pressure chemical vapor deposition from silane and ammonia. J. Vac. Sci. Technol. A 18, 2389 (2000)CrossRefGoogle Scholar
  7. 7.
    O. Tabata, S. Sugiyama, M. Takigawa, Control of internal stress and Young’s modulus of Si3N4 and polycrystalline silicon thin films using the ion implantation technique. Appl. Phys. Lett. 56, 1314–1316 (1990)CrossRefGoogle Scholar
  8. 8.
    H. Shang, Improving stress stability in low-pressure chemical vapor deposited silicon dioxide films by ion implantation. Thin Solid Films 598, 103–108 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Shi, H. Zhang, G. Zhang, Z. Li, Modifying residual stress and stress gradient in LPCVD Si3N4 film with ion implantation. Sens. Actuators A 130–131, 352–357 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Stoffel, A. Kovács, W. Kronast, B. Müller LPCVD against PECVD for micromechanical applications. J. Micromech. Microeng. 6, 1–13 (1996)CrossRefGoogle Scholar
  11. 11.
    S.P. Daniel, E. Artacho, J.M. Soler, A. Rubio, P. Ordejon, Abinitio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678 (1999)CrossRefGoogle Scholar
  12. 12.
    M.P. Hughey, R.F. Cook, Stress development kinetics in plasma-enhanced chemical-vapor-deposited silicon nitride films. J. Appl. Phys. 97, 114914 (2005)CrossRefGoogle Scholar
  13. 13.
    J.M. Olson, Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments. Mater. Sci. Semicond. Process. 5, 51–60 (2002)CrossRefGoogle Scholar
  14. 14.
    M.P. Hughey, R.F. Cook, Massive stress changes in plasma-enhanced chemical vapor deposited silicon nitride films on thermal cycling. Thin Solid Films 460, 7–16 (2004)CrossRefGoogle Scholar
  15. 15.
    G. Scardera, T. Puzzer, G. Conibeer, M.A. Green, Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. J. Appl. Phys. 104, 104310 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam. Relat. Mater. 24, 1–5 (2012)CrossRefGoogle Scholar
  17. 17.
    D.P. Chen, T. Ye, C. Xie et al., Stress in SiNx film embedded with silicon nanocrystals preparing by LPCVD. Chin. J. Semicond. 22(12), 1529 (2001)Google Scholar
  18. 18.
    E.A. Irene, Residual stress in silicon nitride films. J. Electron. Mater. 5, 287 (1976)CrossRefGoogle Scholar
  19. 19.
    D. Dergez, J. Schalko, Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications. Appl. Surf. Sci. 284, 348–353 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Temple-Boyer, C. Rossi, E. Saint-Etienne, E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A 16, 2003–2007 (1998)CrossRefGoogle Scholar
  21. 21.
    M.Z. Lai, P.S. Lee, A. Agarwal, Thermal effects on LPCVD amorphous silicon. Thin Solid Films 504, 145 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Molinari, H. Rinnet, M. Vergnat, Visible photoluminescence in amorphous SiNx thin film prepared by reactive evaporation. Appl. Phys. Lett. 77, 3499 (2000)CrossRefGoogle Scholar
  23. 23.
    W.G. Liao, X.B. Zeng, G.Z. Wen et al., Photoluminescence and structure performances of Si-rich silicon nitride thin films containing Si quantum dots. Acta Phys. Sin. (2013).  https://doi.org/10.7498/aps.62.126801 Google Scholar
  24. 24.
    K.N. Andersen, W.E. Svendsen, Annealing and deposition effects of the chemical composition of silicon-rich nitride. Appl. Surf. Sci. 243, 401–408 (2005)CrossRefGoogle Scholar
  25. 25.
    G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures. J. Cryst. Growth 310, 3680 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Morin, G. Raymond, A comparison of the mechanical stability of silicon nitride films deposited with various techniques. J. Vac. Sci. Technol. A 29, 041513 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Toivola, Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films. J. Appl. Phys. 94, 6915 (2003)CrossRefGoogle Scholar
  28. 28.
    X.J. Liu, J.J. Zhang, X.W. Sun, Y.B. Pan, L.P. Huang, C.Y. Jin, Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia. Thin Solid Films 460, 72–77 (2004)CrossRefGoogle Scholar
  29. 29.
    N. Jehanathan, Y. Liu, B. Walmsley, J. Dell, M. Saunders, Effect of oxidation on the chemical bonding structure of PECVD thin films. J. Appl. Phys. 100, 123516 (2006)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, C. Xie, Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature. J. Vac. Sci. Technol. A 33, 05E114 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Electronics DesignMid Sweden UniversitySundsvallSweden
  4. 4.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations