Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2)

  • M. Abd ElkodousEmail author
  • Gharieb S. El-Sayyad
  • AbdElrahman E. Mohamed
  • K. PalEmail author
  • N. Asthana
  • F. Gomes de Souza Junior
  • Farag M. Mosallam
  • Mohamed Gobara
  • Ahmed I. El-Batal


Titanium dioxide (TiO2) nanocomposites have been extensively employed in many fundamental optoelectronic and photocatalytic applications due to their outstanding optical, electronic and chemical properties. In the present work, we introduce a simple layer-by-layer approach to design a magnetic TiO2 nanocomposite that could be easily recycled using an external magnetic field without affecting its quantum efficiency. The crystallinity, size, surface area, stability, morphology, purity and other optical, thermal and magnetic properties of the composite have been investigated. Surface topology, thickness and thermal conduction were also demonstrated by AC conductivity measurements at a specific temperature (55 °C). Our results revealed that the prepared composite has a semi-spherical concentric shape with an average size of about (123.4 nm), surface area of (46.13 m2/g) and zeta potential of (− 24.3 mV) as confirmed by HRTEM, surface area analyzer and zeta potential measurements. TGA and DSC analysis recorded the thermal stability of the composite up to (500 °C) while a band gap of about (3.35 eV) has been calculated. VSM analysis showed that the composite has good magnetic properties. Atomic force microscopy recorded a surface roughness of the composite of about (125 nm) while the average thickness was approximately (10.3 nm). Significant responses of the capacitance–voltage profiles in the employed Preisach model, have been also recorded.



The authors would like to acknowledge the technical support from Nile University, Egypt Egyptian Atomic Energy Authority and Bharath Institute of Higher Education and Research, Department of Nanotechnology, Chennai (India). The authors also appreciate the efforts exerted by Prof. Dr. Ahmed Radwan, Director of Research at Nile University, Egypt for providing us a friendly environment for research and the success of this work.

Compliance with ethical standards

Conflict of interest

All the authors have declared that there is no potential conflict of interest.


  1. 1.
    J. Rotmans, Methods for IA: the challenges and opportunities ahead. Environ Model Assess 3(3), 155–179 (1998)CrossRefGoogle Scholar
  2. 2.
    G.A. Olah, A. Goeppert, G.S. Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley, Weinheim, 2011)Google Scholar
  3. 3.
    T.D. Murschell, Measurements of Current-Use Pesticides and Oxidation Products Using Chemical Ionization Mass Spectrometry (Colorado State University, Fort Collins, 2018)Google Scholar
  4. 4.
    J.B. Goldsteen, Danger All Around: Waste Storage Crisis on the Texas and Louisiana Gulf Coast (University of Texas Press, Austin, 2010)Google Scholar
  5. 5.
    D.R. Boyd, Cleaner, Greener, Healthier: A Prescription for Stronger Canadian Environmental Laws and Policies (UBC Press, Vancouver, 2015)Google Scholar
  6. 6.
    N.P. Cheremisinoff, Handbook of Pollution Prevention Practices (CRC Press, Boca Raton, 2001)Google Scholar
  7. 7.
    D. Ponnamma, M.A.A. Al-Maadeed, 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Mater. Des. 117, 203–212 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Thomas et al., Highly selective gas sensors from photo-activated ZnO/PANI thin films synthesized by mSILAR. Synth. Met. 232, 123–130 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Hezam et al., Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures for photocatalytic overall water splitting. J. Mater. Chem. A 6(43), 21379–21388 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Hezam et al., Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures as efficient sunlight-driven photocatalysts. ACS Omega 3(9), 12260–12269 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Parangusan et al., Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye. Photochem. Photobiol. 94(2), 237–246 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Shibli et al., Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni–P–TiO2–MnO2 coatings. J. Electroanal. Chem. 826, 104–116 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Thomas et al., Microtron irradiation induced tuning of band gap and photoresponse of Al-ZnO thin films synthesized by mSILAR. J. Electron. Mater. 45(10), 4847–4853 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Han et al., Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 107(1–2), 77–87 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Yuan et al., Surface chlorination of TiO2-based photocatalysts: a way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal. 1(3), 200–206 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Parastar et al., Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions. Desalin. Water Treat. 51(37–39), 7137–7144 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Zhang et al., Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 115(18), 9136–9145 (2011)CrossRefGoogle Scholar
  18. 18.
    M.H.A. Kodous et al., C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment. Charact Appl. Nanomater. 1(2) (2018)Google Scholar
  19. 19.
    S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light. J. Photochem. Photobiol. A 367, 94–104 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Peng et al., Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 25(5), 2203–2210 (2011)CrossRefGoogle Scholar
  22. 22.
    L.K. Limbach et al., Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 42(15), 5828–5833 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Weir et al., Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46(4), 2242–2250 (2012)CrossRefGoogle Scholar
  24. 24.
    E. Lombi et al., Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 46(16), 9089–9096 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Shen et al., Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep. Purif. Technol. 68(3), 312–319 (2009)CrossRefGoogle Scholar
  26. 26.
    C.-J.M. Chin, P.-W. Chen, L.-J. Wang, Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere 63(10), 1809–1813 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Meidanchi, O. Akhavan, Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Mandal et al., Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment. J. Environ. Chem. Eng. 4(3), 2706–2712 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Beydoun et al., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A 180(1–2), 193–200 (2002)CrossRefGoogle Scholar
  30. 30.
    A.C. Wright, Diffraction studies of glass structure. J. Non-Cryst. Solids 123(1–3), 129–148 (1990)CrossRefGoogle Scholar
  31. 31.
    R. Mozzi, B. Warren, The structure of vitreous silica. J. Appl. Crystallogr. 2(4), 164–172 (1969)CrossRefGoogle Scholar
  32. 32.
    Q. Mei, C. Benmore, J. Weber, Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98(5), 057802 (2007)CrossRefGoogle Scholar
  33. 33.
    Q. Mei et al., Intermediate range order in vitreous silica from a partial structure factor analysis. Phys. Rev. B 78(14), 144204 (2008)CrossRefGoogle Scholar
  34. 34.
    T.P. Almeida et al., Hydrothermal synthesis of mixed cobalt-nickel ferrite nanoparticles. J. Phys.: Conf. Ser. 371, 012074 (2012)Google Scholar
  35. 35.
    J. Wagner, T. Autenrieth, R. Hempelmann, Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO2 core shell particles]. J. Magn. Magn. Mater. 252, 4–6 (2002)CrossRefGoogle Scholar
  36. 36.
    D. Raoufi, T. Raoufi, The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl. Surf. Sci. 255(11), 5812–5817 (2009)CrossRefGoogle Scholar
  37. 37.
    X. Huang et al., Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater. Lett. 65(19–20), 2887–2890 (2011)CrossRefGoogle Scholar
  38. 38.
    X. Li et al., Fe3O4@ SiO2@ TiO2@ Pt hierarchical core–shell microspheres: controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle. Cryst. Growth Des. 14(11), 5506–5511 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Wang et al., Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites. Adv. Mater. Sci. Eng. (2012). Google Scholar
  40. 40.
    Y. Fan et al., Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method. Mater. Sci. Semicond. Process. 15(5), 582–585 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Paul Raj, Mineralization of azo dye using combined photo-Fenton and photocatalytic processes under visible Light. J. Catal. (2013). Google Scholar
  42. 42.
    P. Dobrowolska et al., Application of Turkevich method for gold nanoparticles synthesis to fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. Materials 8(6), 2849–2862 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Mushtaq et al., Synthesis, structural and biological studies of cobalt ferrite nanoparticles. Bulg. Chem. Commun. 48(3), 565–570 (2016)Google Scholar
  44. 44.
    S. Furukawa, T. Miyasato, Quantum size effects on the optical band gap of microcrystalline Si: H. Phys. Rev. B 38(8), 5726 (1988)CrossRefGoogle Scholar
  45. 45.
    K.S. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004)CrossRefGoogle Scholar
  46. 46.
    H. Adelkhani, M. Ghaemi, M. Ruzbehani, Evaluation of the porosity and the nano-structure morphology of MnO2 prepared by pulse current electrodeposition. Int. J. Electrochem. Sci. 6, 123–135 (2011)Google Scholar
  47. 47.
    W. Wang et al., Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl. Catal. B 119–120, 109–116 (2012)CrossRefGoogle Scholar
  48. 48.
    T.M. Riddick, Control of Colloid Stability Through Zeta Potential (Livingston Wynnewood, 1968)Google Scholar
  49. 49.
    A. Maira et al., Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal. 202(2), 413–420 (2001)CrossRefGoogle Scholar
  50. 50.
    B.G.T. Keerthana et al., Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater. Lett. 220, 20–23 (2018)CrossRefGoogle Scholar
  51. 51.
    L. Alcaraz, J. Isasi, Synthesis and study of Y0.9Ln0.1VO4 nanophosphors and Y0.9Ln0.1VO4@SiO2 luminescent nanocomposites with Ln = Eu. Dy, Er. Ceram. Int. 43(6), 5311–5318 (2017)CrossRefGoogle Scholar
  52. 52.
    Q. Chang et al., Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. J. Lumin. 128(12), 1890–1895 (2008)CrossRefGoogle Scholar
  53. 53.
    A.M. Donia et al., Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J. Hazard. Mater. 161(2–3), 1544–1550 (2009)CrossRefGoogle Scholar
  54. 54.
    P. Arévalo-Cid, J. Isasi, F. Martín-Hernández, Comparative study of core-shell nanostructures based on amino-functionalized Fe3O4@SiO2 and CoFe2O4@SiO2 nanocomposites. J. Alloys Compd. (2018). Google Scholar
  55. 55.
    A. Ditta et al., Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Physica B 507, 27–34 (2017)CrossRefGoogle Scholar
  56. 56.
    M. Amer et al., Characterization and structural and magnetic studies of as-synthesized Fe2+ CrxFe(2–x)O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)CrossRefGoogle Scholar
  57. 57.
    M. Amer et al., Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)CrossRefGoogle Scholar
  58. 58.
    R. Kadam et al., Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)CrossRefGoogle Scholar
  59. 59.
    A. Ghasemi, Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1–xSrxFe2O4 spinel thin film. J. Alloys Compd. 645, 467–477 (2015)CrossRefGoogle Scholar
  60. 60.
    F.M. Mosallam et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathogen. 122, 108–116 (2018)CrossRefGoogle Scholar
  61. 61.
    M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1-x)Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)CrossRefGoogle Scholar
  62. 62.
    A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)CrossRefGoogle Scholar
  63. 63.
    A. Baraka et al., Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71(11), 2271–2281 (2017)CrossRefGoogle Scholar
  64. 64.
    M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)Google Scholar
  65. 65.
    M.A. Maksoud et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)CrossRefGoogle Scholar
  66. 66.
    S. Singhal et al., Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1–xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)CrossRefGoogle Scholar
  67. 67.
    J. Xiang et al., Electrospinning preparation, characterization and magnetic properties of cobalt–nickel ferrite (Co1–xNixFe2O4) nanofibers. J. Colloid Interface Sci. 376(1), 57–61 (2012)CrossRefGoogle Scholar
  68. 68.
    S.T. John, D.D. Klug, Y. Le Page, High-pressure densification of amorphous silica. Phys. Rev. B 46(10), 5933 (1992)CrossRefGoogle Scholar
  69. 69.
    D. Eder, A.H. Windle, Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. J. Mater. Chem. 18(17), 2036–2043 (2008)CrossRefGoogle Scholar
  70. 70.
    Z. Dai et al., Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst. Mater. Lett. 241, 239–242 (2019)CrossRefGoogle Scholar
  71. 71.
    R.K. Jammula et al., Strong interfacial polarization in ZnO decorated reduced-graphene oxide synthesized by molecular level mixing. Phys. Chem. Chem. Phys. 17(26), 17237–17245 (2015)CrossRefGoogle Scholar
  72. 72.
    D. Wang et al., Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013)CrossRefGoogle Scholar
  73. 73.
    K. Pal et al., Optical and electrical investigation of ZnO nano-wires array centre micro-flowers turn to hierarchical nano-rose structures. J. Nanosci. Nanotechnol. 15, 1–10 (2016)Google Scholar
  74. 74.
    A.K. Roy et al., Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94 Ba0.06TiO3 ceramic. ISRN Ceram. (2012). Google Scholar
  75. 75.
    D.P. Almond, C. Bowen, Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phys. Rev. Lett. 92(15), 157601 (2004)CrossRefGoogle Scholar
  76. 76.
    C. Bowen, D.P. Almond, Modelling the’universal’dielectric response in heterogeneous materials using microstructural electrical networks. Mater. Sci. Technol. 22(6), 719–724 (2006)CrossRefGoogle Scholar
  77. 77.
    M. Raghasudha, D. Ravinder, P. Veerasomaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4(07), 432 (2013)Google Scholar
  78. 78.
    K. Pal et al., Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Appl. Surf. Sci. 357, 1499–1510 (2015)CrossRefGoogle Scholar
  79. 79.
    K. Pal, M.A. Elkodous, M.L.N.M. Mohan, CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci.: Mater. Electron. 29(12), 10301–10310 (2018)Google Scholar
  80. 80.
    K. Pal et al., Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. (2018). Google Scholar
  81. 81.
    T. Thirugnanasambandan et al., Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles. Nano-struct Nano-objects 16, 224–233 (2018)CrossRefGoogle Scholar
  82. 82.
    S. Miller et al., Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)CrossRefGoogle Scholar
  83. 83.
    S. Miller et al., Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J. Appl. Phys. 70(5), 2849–2860 (1991)CrossRefGoogle Scholar
  84. 84.
    P. Yang et al., Electrical properties of SrBi2Ta2O9 ferroelectric thin films at low temperature. Appl. Phys. Lett. 81(24), 4583–4585 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Abd Elkodous
    • 1
    Email author
  • Gharieb S. El-Sayyad
    • 2
  • AbdElrahman E. Mohamed
    • 3
  • K. Pal
    • 4
    Email author
  • N. Asthana
    • 5
  • F. Gomes de Souza Junior
    • 6
  • Farag M. Mosallam
    • 2
  • Mohamed Gobara
    • 7
  • Ahmed I. El-Batal
    • 2
  1. 1.School of Engineering and Applied Sciences, Center for Nanotechnology (CNT)Nile UniversitySheikh ZayedEgypt
  2. 2.Drug Microbiology Lab, Drug Radiation Research DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  3. 3.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  4. 4.Department of Nanotechnology, BIHER Research ParkBharath UniversityChennaiIndia
  5. 5.National Centre of Exp. Mineralogy and PetrologyUniversity of AllahabadAllahabadIndia
  6. 6.Instituto de Macromoléculas: Professora Eloisa Mano, Centro de Tecnologia- CidadeUniversitáriaUniversidade Federal Rio de JaneiroRio de JaneiroBrazil
  7. 7.Chemical Engineering DepartmentMilitary Technical College, Egyptian Armed ForcesCairoEgypt

Personalised recommendations