Advertisement

Rapid formation of Cu–Cu joints with high shear strength using multiple-flocculated Ag nanoparticle paste

  • Bo Hu
  • Fan Yang
  • Ye Peng
  • Hongjun JiEmail author
  • Shihua Yang
  • Ming YangEmail author
  • Mingyu Li
Article
  • 34 Downloads

Abstract

A new type of Ag nanoparticle (NP) paste for rapid sintering was prepared by controlling the thickness of the NP capping agent. The Ag NP paste was combined with a rapid thermo-compression (RTC) method to form a reliable Cu–Cu joint. The shear strengths of the Cu/Ag NP/Cu joints were 46.8 MPa and 90.7 MPa after sintering at 300 °C for only 5 s and 20 s, respectively. The sintering sequence phenomenon was observed, and the differences in microstructure between the pressure-assisted and pressureless joints were investigated. Robust bonding at the lattice level between the Ag NPs and Cu substrate was observed by high-resolution transmission electron microscopy, and this bonding contributed to the high shear strength obtained under rapid sintering conditions. A commercially acceptable alternative solution to achieving reliable Cu–Cu joint formation was obtained, especially for thermo-sensitive devices.

Notes

Acknowledgements

The authors would like to gratefully acknowledge the financial support from the Shenzhen Special Funds for Strategic Emerging Industries Grant (JCYJ 20150529152949390 and 20160318095308401) and the Innovation Foundation of Shanghai Aerospace Science and Technology under Grant No. SAST2016050.

References

  1. 1.
    K. Ma, M. Liserre, F. Blaabjerg, T. Kerekes, Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter. IEEE Trans. Power Electron. 30, 590–602 (2014)CrossRefGoogle Scholar
  2. 2.
    W. Zhou, X. Zhong, K. Sheng, High temperature stability and the performance degradation of SiC mosfets. IEEE Trans. Power Electron. 29, 2329–2337 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, High-temperature creep and hardness of eutectic 80Au/20Sn solder. J. Alloys Compd. 44, 8340–343 (2008)Google Scholar
  4. 4.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn high-temperature solders. J. Electron. Mater. 38, 266–272 (2009)CrossRefGoogle Scholar
  5. 5.
    E. Lugscheider, S. Ferrara, Characterisation and optimisation of innovative solders for transient liquid phase bonding and active soldering. Adv. Eng. Mater. 6, 160–163 (2004)CrossRefGoogle Scholar
  6. 6.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRefGoogle Scholar
  7. 7.
    M.Y. Li, Y. Xiao, Z. Zhang, J. Yu, Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 7, 9157–9168 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Liu, H. Chen, H. Ji, M. Li, Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces 8, 33289–33298 (2016)CrossRefGoogle Scholar
  9. 9.
    S.T. Feng, Y.H. Mei, G. Chen, X. Li, G.Q. Lu, Characterizations of rapid sintered nanosilver joint for attaching power chips. Materials 9, 564 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Li, H. Jing, Y. Han, L. Xu, G. Lu, Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering. J. Electron. Mater. 45, 3003–3012 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Frens, Carey lea’s colloidal silver. Kolloid. Z. Polym. 233, 922–929 (1969)CrossRefGoogle Scholar
  12. 12.
    S.J. Kim, Y.G. Cho, C.S. Oh, E.K. Dong, B.M. Man, H.N. Han, Development of a dual phase steel using orthogonal design method. Mater. Des. 30, 1251–1257 (2009)CrossRefGoogle Scholar
  13. 13.
    M.A. Asoro, D. Kovar, P.J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: In situ TEM observations. Chem. Commun. 50, 4835–4838 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr Mater. 66, 582–585 (2012)CrossRefGoogle Scholar
  15. 15.
    S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Novel interface material used in high power electronic die-attaching on bare Cu substrates. J. Mater. Sci. Mater. Electron. 27, 1–10 (2016)Google Scholar
  16. 16.
    S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scr. Mater. 69, 789–792 (2013)CrossRefGoogle Scholar
  17. 17.
    S.Y. Zhao, X. Li, Y. Mei, G.Q. Lu, Effect of silver flakes in silver paste on the joining process and properties of sandwich power modules (IGBTs chip/silver paste/bare Cu). J. Electron. Mater. 45, 1–11 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Xie, Y. Wang, Y. Mei, H. Xie, K. Zhang, S. Feng, G.Q. Lu, Rapid sintering of nano-Ag paste at low current to bond large area (> 100 mm2) power chips for electronics packaging. J. Mater. Process. Technol. 255, 644–649 (2018)CrossRefGoogle Scholar
  19. 19.
    W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, P.F. Yang, Low-temperature Cu-to-Cu bonding using silver nanoparticles stabilised by saturated dodecanoic acid. Mater. Sci. Eng. A 613, 372–378 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology at ShenzhenShenzhenChina
  2. 2.Shanghai Aerospace Equipment ManufacturerShanghaiChina
  3. 3.Hisilicon Optoelectronics Co., LtdWuhanChina

Personalised recommendations