Enhanced photovoltaic behavior of thickness-dependent BiFeO3-based heterostructures via the introduction of electron transport layers

  • H. Ke
  • H. J. SunEmail author
  • X. F. Liu
  • H. T. Sui


Thickness and direct band gap are two important parameters affecting the photovoltaic performance of BiFeO3 (BFO)-based thin film. In this paper, thickness effects on the microstructure and insulating properties of BFO thin film are firstly explored. The minimum leakage current density (2.18 × 10− 5 A/cm2 at 200 kV/cm) of 200 nm thin film is obtained due to a well-crystallized polycrystalline structure with high densification. On the basis, FTO/TiO2/BFO and FTO/ZnO/BFO heterostructures are proposed and successfully prepared. It turns out that with the introduction of TiO2 and ZnO acting as electron transport layer, both heterostructures possess enhanced absorption intensity and exhibit a significant red-shift, which can be ascribed to the reduced direct band gap (Eg) of 2.66 and 2.63 eV, respectively. Particularly, ZnO/BFO possess enhanced photovoltaic with relatively large Voc, Jsc, FF and η values of 1.32 V, 3.63 mA/cm2, 0.59 and 2.86, respectively. Our results demonstrate that the introduction of electron transport layer tends to be an effective way in improving the photovoltaic performance of BFO-based films.



This work was supported by the National Natural Science Foundation of China (Grant Nos. U1806221, 51672198, 51272191), Innovation and Development Project of Zibo City (2017CX01A022), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3, 2018ZCQZB01), and Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503).


  1. 1.
    H. Wang, H. Xu, C. Zeng, Y. Shen, Y.-H. Lin, C.-W. Nan, J. McKittrick, J. Am. Ceram. Soc. 99, 1133–1136 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Sun, F. Guo, Q. Lu, S. Zhao, Ceram. Int. 44, 13994–13998 (2018)CrossRefGoogle Scholar
  3. 3.
    H. Li, J. Zhu, Q. Wu, J. Zhuang, H. Guo, Z. Ma, Y. Ye, Ceram. Int. 43, 13063–13068 (2017)CrossRefGoogle Scholar
  4. 4.
    R.M. Swanson, Photovoltaics Res. Appl. 14, 443–453 (2006)CrossRefGoogle Scholar
  5. 5.
    A. Skoczek, T. Sample, E.D. Dunlop, Photovoltaics Res. Appl. 17, 227–240 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Han, Y. Ma, C. Quan, N. Gao, Q. Zhang, W. Mao, J. Zhang, J. Yang, X.a. Li, W. Huang, Ceram. Int. 41, 2476–2483 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Nie, S. Zhao, Y. Bai, Q. Lu, Ceram. Int. 42, 14036–14040 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, Y. Song, Ceram. Int. 39, 8729–8736 (2013)CrossRefGoogle Scholar
  9. 9.
    H.J. Feng, K. Yang, W. Deng, M. Li, M. Wang, B. Duan, F. Liu, J. Tian, X. Guo, Phys. Chem. Chem. Phys. 17, 26930–26936 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Mai, T. Lu, Q. Li, Q. Sun, K. Vu, H. Chen, G. Wang, M.G. Humphrey, F. Kremer, L. Li, R.L. Withers, Y. Liu, ACS Appl. Mat. Interfaces. 10, 29786–29794 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Chen, J. Ding, J. Qiu, N. Yuan, Mater. Lett. 139, 325–328 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Sharma, M. Tomar, A. Kumar, N.K. Puri, V. Gupta, J. Phys. Chem. Solids 93, 63–67 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Wu, Y. Guo, B. Guo, Y. Zhang, H. Li, H. Liu, J. Phys. D 46, 365304 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Parida, A. Singh, M. Oh, M. Jeon, J.-W. Kang, H. Kim, Mater. Today Commun. 18, 176–183 (2019)CrossRefGoogle Scholar
  16. 16.
    J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Chem. Lett. 44, 610–612 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Djamil, K. Aicha, A. Souifi, D. Fayçal, Thin Solid Films. 623, 1–7 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Wu, C. Zhang, S. Yu, L. Li, Ceram. Int. 44, 11466–11471 (2018)CrossRefGoogle Scholar
  19. 19.
    P. Chen, P. Li, J. Zhai, B. Shen, F. Li, S. Wu, Ceram. Int. 43, 13371–13376 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Li, H. Sun, X. Liu, H. Sui, P. Liu, Mater. Lett. 219, 4–7 (2018)CrossRefGoogle Scholar
  21. 21.
    H.-J. Feng, M. Wang, F. Liu, B. Duan, J. Tian, X. Guo, J. Alloys Compd. 628, 311–316 (2015)CrossRefGoogle Scholar
  22. 22.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982–988 (2014)CrossRefGoogle Scholar
  23. 23.
    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95, 062909 (2009)CrossRefGoogle Scholar
  24. 24.
    S.J. Roh, R.S. Mane, S.K. Min, W.J. Lee, C.D. Lokhande, S.H. Han, Appl. Phys. Lett. 89, 253512 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4, 2880–2884 (2013)CrossRefGoogle Scholar
  26. 26.
    C.-H. Chiang, C.-G. Wu, Nat. Photon. 10, 196–200 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China
  4. 4.Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development ZoneZiboPeople’s Republic of China

Personalised recommendations