Advertisement

Sol–gel mediated microwave synthesis of pure, La and Zr doped SnS2 nanoflowers an efficient photocatalyst for the degradation of methylene blue

  • V. Govindan
  • L. Kashinath
  • D. Joseph Daniel
  • K. SankaranarayananEmail author
Article

Abstract

La and Zr intercalated SnS2 nanostructures have been synthesised using facile sol–gel mediated microwave method. Photocatalytic activity of methylene blue dye was investigated using the synthesized nanosturctures and superior photocatalytic activity was witnessed for the La and Zr intercalated SnS2 than the pure SnS2 nanoflower. It is attributed to the enhanced surface charge carriers and fast electron transport inside the lattice of SnS2. Enlargement on surface active sites in turn increases surface absorption effect due to La and Zr which acts as tentacles to control the recombination process and promotes the higher photoredox reaction. The synthesized nanomaterials were characterized using PXRD, Raman, PL, UV–Vis spectroscopy, FE-SEM and XPS. It is noted from the structural analysis that the decrease in cell volume with increase of doping concentration contributes to Moss-Burstein effect. The increment of band gap and quenching in the photoluminescence effect supported the absorptivity of photoenergies which served as photosensitizer.

Notes

Acknowledgements

Author Mr. V. Govindan is gratefuly to the Deparment of Science and Technology, New Delhi for providing financial assistance through DST-INSPIRE fellowship [IF 130833]. One of the author D. J. Daniel gratefuly acknowledged the National Research Foundation of Korea (NRF) grant (No. 2018R1A6A1A06024970) for the financial support.

References

  1. 1.
    N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20, 110–117 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Xu, R.J. Lu, X.F. Zho, Y. Zhu, S.L. Xu, F.Z. Zhang, Appl. Catal. B 125, 11–20 (2012)CrossRefGoogle Scholar
  3. 3.
    Y.R. Tao, X.C. Wu, W. Wang, J.N. Wang, J. Mater. Chem. C3, 1347–1353 (2015)Google Scholar
  4. 4.
    J.-H. Liu, G.-F. Huang, W.-Q. Huang, H. Miao, B.-X. Zhou, Mater. Lett. 161, 480–483 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Mukherjee, N. Raushik, P. Ravi, N. Tripathi, A.M. Joseph, P.K. Mohapatra, S. Dhar, B.P. Singh, G.V. Pavankumar, E. Simsek, S. Lodha, Sci. Rep. 7, 41175 (2017)Google Scholar
  6. 6.
    Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Sep. Purif. Technol. 81, 101–107 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.-J. Yuan, D.-Q. Chen, X.-F. Shi, J.-R. Tu, B. Hu, N.-X. Yang, Z.-T. Yu, Z.-G. Zou, Chem. Eng. J. 313, 1438–1446 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Wei, J. Hu, T. Zhou, X. Zhou, J. Liua, J. Li, Acta Mater. 66, 163–171 (2014)CrossRefGoogle Scholar
  9. 9.
    M. He, L.-X. Yuan, Y.-H. Huang, RSC Adv. 3(10), 3374–3383 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Schalaf, N.R. Armstrong, B.A. Parkinson, C. Pettenkofer, W. Jaegermann, Surf. Sci. 385(1), 1–14 (1997)CrossRefGoogle Scholar
  11. 11.
    W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang, P. Wei, Nanotechnology 17, 2918–2924 (2006)CrossRefGoogle Scholar
  12. 12.
    K.-T. Lee, Y.-C. Liang, H.-H. Lin, C.-H. Li, S.-Y. Lu, Electrochim. Acta 219, 241–250 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Zeng, W. Li, huanhuan Zhang, X. Wu, W. Sun, Z. Zhu, Y. Yu, Anal. Methods 6, 404–409 (2014)CrossRefGoogle Scholar
  14. 14.
    P.W. Shen, J.T. Wang, Dictionary of Compounds (Shanghai Lexico-Graphical Publishing House, Shanghai, 2002)Google Scholar
  15. 15.
    H. Qiao, X. Chen, B. Wang, Z. Huang, X. Qi, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-019-00689-3 Google Scholar
  16. 16.
    X. Chen, Z. Huang, X. Ren, G. Xu, J. Zhou, Y. Tao, X. Qi, J. Zhong, Chem. Nano. Mater. 4, 373–378 (2018)Google Scholar
  17. 17.
    K. Wu, C.-J. Wu, C.-M. Tseng, J.-K. Chang, T.-C. Lee, J. Taiwan Inst. Chem. Eng. 66, 292–300 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Tang, X. Qi, Z. Zhang, G. Ai, Y. Liu, Z. Huang, J. Zhong, Ceram. Int. 42, 6572–6580 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Tang, X. Qi, W. Han, L. Ren, Y. Liu, X. Wang, J. Zhong, Appl. Surface Sci. 355, 7–13 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Wang, Y. Huang, J. Miao, Y. Zhao, Y. Wang, Electrochim. Acta 93, 120–130 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Kiruthigaa, C. Manoharan, M. Bououdina, S. Ramalingam, C. Raju, Solid State Sci. 44, 32–38 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Kiruthigaa, C. Manoharan, C. Raju, S. Dhanapandian, V. Thanikachalam, Mater. Sci. Semicond. Process. 26, 533–539 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Govindan, H. Imran, V. Dharuman, K. Sankaranarayanan, J. Mater. Sci. Mater. Electron. 29, 17670–17680 (2018)CrossRefGoogle Scholar
  24. 24.
    D. Prabha, S. Ilangovan, S. Balamurugan, M. Suganya, S. Anitha, V.S. Nagarethinam, A.S. Balu, Optik 142, 301–310 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Srivindh, V.S. Nagarethinam, S. Balamurugan, S. Anitha, M. Suganya, D. Prabha, A.R. Balu, Surfaces Interfaces 9, 58–63 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Liu, H. Bai, Powder Technol. 237, 610–615 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.Q. Lei, S.Y. Song, W.Q. Fan, Y. Xing, H.J. Zhang, J. Mater. Chem. C 113, 1280–1285 (2009)Google Scholar
  28. 28.
    N. Wang, P. Wu, L. Sun, W. Zhou, J. Phys. Chem. Solids 92, 1–6 (2016)CrossRefGoogle Scholar
  29. 29.
    X. An, J.C. Yu, J.W. Tang, J. Mater. Chem. A 2, 1000–1005 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Cong, M. Long, Z. Cui, X. Li, Z. Dong, G. Yuan, J. Zhang, Appl. Surf. Sci. 282, 400–407 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Kashinath, K. Namratha, K. Byrappa, Appl. Surf. Sci. 357, 1849–1856 (2015)CrossRefGoogle Scholar
  32. 32.
    P. Balaz, T. Ohatani, Z. Bastl, E. Boldizarova, J. Alloys Compd. 337, 76–82 (2002)CrossRefGoogle Scholar
  33. 33.
    Y. Hu, X. Chen, X. Ren, Z. Huang, X. Qi, J. Zhong, J. Mater. Sci. 29, 19614–19619 (2018)Google Scholar
  34. 34.
    Y. Hu, X. Ren, H. Qiao, Z. Huang, X. Qi, J. Zhong, Sol. Energy 157, 905–910 (2017)CrossRefGoogle Scholar
  35. 35.
    I.P. Parkin, A.T. Rowley, Polyhedron 12, 2961–2964 (1993)CrossRefGoogle Scholar
  36. 36.
    N. Parveen, S.A. Ansari, H.R. Alamri, Md.O. Ansari, Z. Khan, M.H. Cho, ACS Omega 3(2), 1581–1588 (2018)CrossRefGoogle Scholar
  37. 37.
    Q. Li, A. Wei, Z. Guo, J. Liu, Y. Zhao, Z. Xiao, J. Mater. Sci. 29, 16057–16063 (2018)Google Scholar
  38. 38.
    C. Lin, M. Zhu, T. Zhang, Y. Liu, Y. Lv, X. Li, M. Liu, RSC Adv. 7, 12255–12264 (2017)CrossRefGoogle Scholar
  39. 39.
    C.R. patra, A. Odani, V.G. Pol, D. Aurbach, A. Gedanken, J. Solid State Electrochem. 11, 186–194 (2017)CrossRefGoogle Scholar
  40. 40.
    Q. Wang, Y. Huang, J. Miao, Y. Zhao, W. Zhang, Y. Wang, J. Am. Ceram. Soc. 96, 2190–2196 (2013)CrossRefGoogle Scholar
  41. 41.
    G. Lucovsky, J.C. Mikkelsen, W.Y. Liang, R.M. White, R.M. Martin, Phys. Rev. B 14, 1663–1669 (1976)CrossRefGoogle Scholar
  42. 42.
    L. Albello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, J. Solid State Chem. 135, 78–85 (1998)CrossRefGoogle Scholar
  43. 43.
    H. Xiao, Y.C. Zhang, Mater. Chem. Phys. 112, 742–744 (2008)CrossRefGoogle Scholar
  44. 44.
    I.B. Kerchachi, A. Attaf, H. Saidi, A. Bouhdjer, H. Bendjedidi, Y. Benkhetta, R. Azizi, J. Semicond. 37, 032001–032006 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Prabhahar, N. Suryanarayanan, K. Rajaseakar, S. Srikanth, D. Kathirvel, Chalcogenide Lett. 6, 309–313 (2009)Google Scholar
  46. 46.
    S.H. Chaki, M.P. Deshpande, D.P. Trivedi, J.P. Tailore, M.D. Chandhary, K. Mahato, Appl. Nanosci. 3(3), 189–195 (2013)CrossRefGoogle Scholar
  47. 47.
    A. Galenda, M.M. Natile, V. Krishnan, H. Bertagnolli, A. Glisenti, Chem. Mater. 19, 2796–2808 (2009)CrossRefGoogle Scholar
  48. 48.
    Z.Y. Zhang, J.D. Huang, M.Y. Zhang, Q. Yuan, B. Dong, Appl. Catal. B 163, 298–305 (2015)CrossRefGoogle Scholar
  49. 49.
    Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)CrossRefGoogle Scholar
  50. 50.
    U. Megha, G. Varghese, K. Shijna, Bull. Mater. Sci. 39, 125–131 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Ji, I. Chang, Y. Holee, J. Park, J.Y. Paek, M.H. Lee, S.W. Cha, Nanoscale Res. Lett. 8(48), 1–7 (2013)Google Scholar
  52. 52.
    D.Q. Gao, Q.X. Xue, X.Z. Mao, M.Z. Xue, S.P. Shi, D.S. Xue, Cryst. Eng. Commun. 16, 7876–7880 (2014)CrossRefGoogle Scholar
  53. 53.
    L. Kashinath, K. Namratha, K. Byrappa, J. Alloy. Compd. 695, 799–809 (2017)CrossRefGoogle Scholar
  54. 54.
    L. Kashinath, K. Namratha, S. Srikantaswamy, A. Vinu, K. Byrappa, New J. Chem. 41, 1723–1735 (2017)CrossRefGoogle Scholar
  55. 55.
    R. Murugan, L. Kashinath, R. Subash, P. Sakthivel, K. Byrappa, S. Rajendran, G. Ravi, Mater. Res. Bull. 97, 319–325 (2018)CrossRefGoogle Scholar
  56. 56.
    U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, RSC Adv. 8, 17582–17594 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. Govindan
    • 1
  • L. Kashinath
    • 2
  • D. Joseph Daniel
    • 3
  • K. Sankaranarayanan
    • 1
    Email author
  1. 1.Functional Materials Lab, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Center for Materials Science and TechnologyUniversity of MysoreMysoreIndia
  3. 3.Department of PhysicsKyungpook National UniversityDaeguSouth Korea

Personalised recommendations