Enhanced photocatalytic activity of porous In2O3 for reduction of CO2 with H2O

  • Bingbing Hu
  • Qiang Guo
  • Kang Wang
  • Xitao WangEmail author


In this paper, a series of indium oxides were prepared by calcining the In(OH)3 precursors, which were synthesized by hydrothermal method using the mixed solution of ethylenediamine (En) and water as a solvent. The morphologies, particle sizes, pore structure, crystallinity and surface defect concentration of these photocatalysts were adjusted by varying the ratio of En to water during the preparation of In(OH)3 precursors. The results revealed that In2O3 photocatalysts obtained from the precursor prepared in En containing solvent exhibited much higher photocatalytic activities for CO2 reduction with H2O when compared to that derived from the precursor prepared in pure water. This result can be ascribed to several reasons as following. Firstly, the En addition with a suitable amount can improve the crystallinity of In2O3 and decrease the surface defect concentration, which obviously depressed the recombination of photogenerated electrons and holes. Also, the addition of En during the preparation of precursor can decrease the particle size, increase specific surface area and pore structure, resulting into the increase of active sites. Finally, the band gap of In2O3 can be slightly narrowed after the addition of En, resulting in enhanced light absorption in the visible region. When the ratio of ethylenediamine to water is 1:1, the as-prepared In2O3 possessing the largest specific surface area and pore volume, enhanced light absorption ability and higher hole–electron separation efficiency, exhibited the highest photocatalytic activity. Under visible light irradiation, the H2, CO and CH4 production rates of 5.3, 8.3 and 27.2 µmol/gcat/h can be achieved, respectively.



We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21276190 and 20806059) and Tianjin Natural Science Foundation (15 JCYBJC20900).


  1. 1.
    W. Dai, X. Hu, T. Wang, W. Xiong, X. Luo, J. Zou, Appl. Surf. Sci. 434, 481–491 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Wei, A. William, Z.Y. Jeannie, L. Cao, D. Chen, R.A. Caruso, J. Phys. Chem. B 121, 22114–22122 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Wang, D. Jiang, D. Wu, D.B. Li, Y.H. Sun, Prog. Chem. 24, 2116–2123 (2012)Google Scholar
  4. 4.
    T.M. Su, Z.Z. Qin, H.B. Ji, Y.X. Jiang, G. Huang, Environ. Chem. Lett. 14, 99–112 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Nahar, M.M.F. Zain, A.A.H. Kadhum, H.A. Hasan, M.R. Hasan, Materials 10, 6296 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Edelmannova, K.Y. Lin, J.C.S. Wu, I. Troppova, L. Capek, K. Koci, Appl. Surf. Sci. 454, 313–318 (2018)CrossRefGoogle Scholar
  7. 7.
    C.C. Lin, X.H. Hou, Y.J. Zhang, Y. Wang, T. Chen, He, Appl. Catal. B 221, 312–319 (2018)CrossRefGoogle Scholar
  8. 8.
    M.M. Kandy, V.G. Gaikar, Mater. Res. Bull. 102, 440–449 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Meng, G.F. Zuo, P.X. Zong, H. Pang, J. Ren, X.F. Zeng, S.S. Liu, Y. Shen, W. Zhou, J.H. Ye, Appl. Catal. B 237, 68–73 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C 25, 106–137 (2015)CrossRefGoogle Scholar
  11. 11.
    W.W. Xiong, W.L. .Dai, X. Hu, L.X. Yang, T.Y. Wang, Y.C. Qin, X.B. Luo, J.P. Zou, Mater. Lett. 232, 36–39 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Pougin, G. Dodekatos, M. Dilla, H. Tueysuez, J. Strunk, Chem.-Eur. J. 24, 12416–12425 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Li, P. Li, K. Chang, T. Wang, L.Q. Liu, Q. Kang, S.X. Ouyang, J.H. Ye, Chem. Commun. 51, 7645–7648 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Katsumata, K. Sakai, K. Ikeda, G. Carja, N. Matsushita, K. Okada, Mater. Lett. 107, 138–140 (2013)CrossRefGoogle Scholar
  15. 15.
    Y.C. Wei, X.X. Wu, Y.L. Zhao, L. Wang, Z. Zhao, X.T. Huang, J. Liu, J.M. Li, Appl. Catal. B 236, 445–457 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, D.K. Wang, X.Y. Deng, Z.H. Li, Catal. Sci. Technol. 7, 4893–4904 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Luo, J.L. Zhang, W. Li, Z.H. He, X.F. Sun, J.B. Shi, D. Shao, B.X. Zhang, X.N. Tan, B.X. Han, ACS Appl. Mater. Interfaces 9, 41594–41598 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Zhu, C.F. Zhang, Q. Li, L.K. Xiong, R.X. Chen, X.B. Wan, Z. Wang, W. Chen, Z. Deng, Y. Peng, Appl. Catal. B 238, 339–345 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology, 29, 052001 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Tu, Y. Zhou, Z. Zou, Imaging. Sci. Photochem. 33, 347–357 (2015)Google Scholar
  21. 21.
    M. Tahir, N.S. Amin, Appl. Catal. A 493, 90–102 (2015)CrossRefGoogle Scholar
  22. 22.
    T.W. Woolerton, S. Sheard, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Energy Environ. Sci 4, 2393–2399 (2011)CrossRefGoogle Scholar
  23. 23.
    L.j. Liu, F. Gao, H.L. Zhao, Y. Li, Appl. Catal. B 134, 349–358 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Kar, S. Zeng, Y. Zhang, E. Vahidzadeh, A. Manuel, R. Kisslinger, K.M. Alam, U.K. Thakur, N. Mahdi, P. Kumar, K. Shankar, P. Kar, Appl. Catal. B 243, 522–536 (2019)CrossRefGoogle Scholar
  25. 25.
    M. Tahir, N.S. Amin, Chem. Eng. J. 285, 635–649 (2016)CrossRefGoogle Scholar
  26. 26.
    J.C. Wang, H.C. Yao, Z.Y. Fan, L. Zhang, J.S. Wang, S.Q. Zang, Z.J. Li, ACS. Appl. Mater. Inter. 8, 3765–3775 (2016)CrossRefGoogle Scholar
  27. 27.
    W.L. Yu, D.F. Xu, Y.T. Peng, J. Mater. Chem. A 3, 19936–19947 (2015)CrossRefGoogle Scholar
  28. 28.
    Y.X. Pan, Z.Q. Sun, H.P. Cong, Y.L. Men, S. Xin, J. Song, S.H. Yu, Nano. Res. 9, 1689–1700 (2016)CrossRefGoogle Scholar
  29. 29.
    J.G. Yu, J. Jin, B. Cheng, M. Jaroniec, J. Mater. Chem. A 2, 3407–3416 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Chakraborty, S. Kaleemulla, N.M. Rao, G.V. Rao, J. Mater. Sci.-Mater. Electron. 28, 18977–18985 (2017)CrossRefGoogle Scholar
  31. 31.
    K.K. Ghuman, T.E. Wood, L.B. Hoch, C.A. Mims, G.A. Ozin, C.V. Singh, Phys. Chem. Chem. Phys. 17, 14623–14635 (2015)CrossRefGoogle Scholar
  32. 32.
    M.A. Gondal, M.A. Dastageer, L.E. Oloore, U. Baig, J. Photochem. Photobiol. A 343, 40–50 (2017)CrossRefGoogle Scholar
  33. 33.
    L.B. Hoch, L. He, Q. Qiao, K. Liao, L.M. Reyes, Y.M. Zhu, G.A. Ozin, Chem. Mater. 28, 4160–4168 (2016)CrossRefGoogle Scholar
  34. 34.
    Y.X. Pan, Y. You, S. Xin, Y.T. Li, G.T. Fu, Z.M. Cui, Y.L. Men, F.F. Cao, S.H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 139, 4123–4129 (2017)CrossRefGoogle Scholar
  35. 35.
    Y.B. Wang, J. Zhao, Y.X. Li, C.Y. Wang, Appl. Catal. B 226, 544–553 (2018)CrossRefGoogle Scholar
  36. 36.
    X.Y. Gan, R.J. Zheng, T.L. Liu, J. Meng, R.P. Chen, X. Sun, X. Sun, Chemistry 23, 7264–7271 (2017)CrossRefGoogle Scholar
  37. 37.
    Q. Li, J.P. Yang, D. Feng, Z.X. Wu, Q.L. Wu, S.S. Park, C.S. Ha, D.Y. Zhao, Nano Res. 3, 632–642 (2010)CrossRefGoogle Scholar
  38. 38.
    N.R. Khalid, E. Ahmed, N.A. Niaz, G. Nabi, M. Ahmad, M.B. Tahir, M. Rafique, M. Rizwan, Y. Khan, Ceram. Int. 43, 6771–6777 (2017)CrossRefGoogle Scholar
  39. 39.
    E. Karamian, S. Sharifnia, J. CO2 Util. 16, 194–203 (2016)CrossRefGoogle Scholar
  40. 40.
    S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, P. Angew, Chem. Int. Edit. 52, 7372–7408 (2013)CrossRefGoogle Scholar
  41. 41.
    N. Serpone, D. Lawless, R. Khairutdinov, Size Effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor. Phys. Chem. 99, 16646–16654 (1995)CrossRefGoogle Scholar
  42. 42.
    H.X. Yang, L. Liu, H. Liang, J.J. Wei, Y.Z. Yang, Crystengcomm 13, 5011–5016 (2013)CrossRefGoogle Scholar
  43. 43.
    C.Q. Han, J. Li, Z.Y. Ma, H.Q. Xie, G.I.N. Waterhouse, L.Q. Ye, T.R. Zhang, Sci. China Mater. 61, 1159–1166 (2018)CrossRefGoogle Scholar
  44. 44.
    M.L. Li, L.L. Zhang, X.Q. Fan, M.Y. Wu, M. Wang, R.L. Cheng, L.L. Zhang, H.L. Yao, J.L. Shi, Appl. Catal. B 201, 629–635 (2017)CrossRefGoogle Scholar
  45. 45.
    W. Chen, C. Wang, W. Ying, C.B. Yu, Y.X. Wu, J. East China Univ. Sci. Technol. 33, 624–628 (2007)Google Scholar
  46. 46.
    Q.T. Guo, P. With, Y. Liu, R. Glaeser, C.J. Liu, Catal. Today 211, 156–161 (2013)CrossRefGoogle Scholar
  47. 47.
    J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, M. Lachowsk, J. Skrzypek, Appl. Catal. A 310, 113–127 (2006)Google Scholar
  48. 48.
    P. Kumar, C. Joshi, A. Barras, B. Sieber, A. Addad, L. Boussekey, S. Szunerits, R. Boukherroub, S.L. Jain, Appl. Catal. B 205, 654–665 (2017)CrossRefGoogle Scholar
  49. 49.
    S.W. Cao, X.F. Liu, Y.P. Yuan, Z.Y. Zhang, Y.S. Liao, J. Fang, S.C.J. Loo, T.C. Sum, C. Xue, Appl. Catal. B 147, 940–946 (2014)CrossRefGoogle Scholar
  50. 50.
    S.B. Wang, B.Y. Guan, X.W.D. Lou, J. Am. Chem. Soc. 140, 5037–5040 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Chemical Engineering Research Center, College of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations