The effect of doping on oxygen conductivity performance of Na0.5Bi0.5TiO3 compounds

  • W. G. WangEmail author
  • X. Y. Li
  • G. L. Hao


The three different doped (Na, K and Mg) Na0.5Bi0.5TiO3 compounds were prepared. The grain conductivity of the doped Na0.5Bi0.5TiO3 compounds shows: Na-doping > K-doping > Mg-doping. Using the dielectric relaxation spectroscopy, the relaxation parameters can be obtained: ENa = 0.61 eV, EK = 0.64 eV and EMg = 0.68 eV. In the Na-doped Na0.5Bi0.5TiO3 compound, there exists the lowest activation energy, best oxygen vacancy mobility and the disorder decrease of A-site sub-lattice in the Na0.5Bi0.5TiO3 compound from the Na-doping on the A (Bi3+)-site, which are the possible reasons for the higher grain conductivity in the Na-doped Na0.5Bi0.5TiO3 compound. In the Mg-doped Na0.5Bi0.5TiO3 compound, despite the worst oxygen vacancy mobility, the concentration of mobilizable oxygen vacancies is almost highest, which can be adopted to increase the mobilizable oxygen vacancy concentration of the Na-doped Na0.5Bi0.5TiO3 compound. For the Na0.5Bi0.5TiO3 compound, the further improvement of the electrical performance can be expected for the slight amount Mg-doping on the Ti4+-sites in the Na-doped Na0.5Bi0.5TiO3 compound, which is meaningful to obtain the higher oxide ionic conductivity in the Na0.5Bi0.5TiO3 compounds.

PACS numbers

62.40.+i 66.30.Lw 81.05.Je 77.80.−e 77.22.Gm 



This work has been subsidized by the National Natural Science Foundation of China (Nos. 11604286, 51661032), the Yan’an University National Natural Science Foundation (Nos. YD2015-07, YDBK2014-01) and by the Shanxi Provincial College students’ innovative projects (Nos. D2017143, D2017163).


  1. 1.
    H. Yahiro, T. Ohuchi, K. Eguchi, Electrical properties and microstructure in the system ceria-alkaline earth oxide. J. Mater. Sci. 23, 1036–1041 (1988)CrossRefGoogle Scholar
  2. 2.
    A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loial, C.H. Rscher, Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ionics 109, 111–118 (1998)CrossRefGoogle Scholar
  3. 3.
    N.Q. Minh, Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993)CrossRefGoogle Scholar
  4. 4.
    K.R. Kendall, C. Navas, J.K. Thomas, H.C.Z. Loye, Recent developments in perovskite-based oxide ion conductors. Solid State Ionics 82, 215–223 (1995)CrossRefGoogle Scholar
  5. 5.
    J.A. Lane, S.J. Benson, D. Waller, J.A. Kilner, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3,. Solid State Ionics 121, 201–208 (1999)CrossRefGoogle Scholar
  6. 6.
    J.A. Kilner, Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129, 13–23 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Ishihara, H. Matsuda, Y. Yakita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801–3804 (1994)CrossRefGoogle Scholar
  8. 8.
    A.S. Kramer, H.L. Tuller, A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15–23 (1995)CrossRefGoogle Scholar
  9. 9.
    T. Liu, X. Zhang, X. Wang, J. Yu, L. Li, A review of zirconia-based solid electrolytes. Ionics 22, 2249–2262 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Hattori, Y. Takeda, Y. Sakaki, A. Nakanishi, S. Ohara, K. Mukai, J. Lee, T. Fukui, Effect of aging on conductivity of yttria stabilized zirconia. J. Power Sources 126, 23–27 (2004)CrossRefGoogle Scholar
  11. 11.
    P.P. Sahoo, J.L. Payne, M. Li, J.B. Claridge, Synthesis, structure and conductivity studies of co-doped ceria: CeO2–Sm2O3–Ta2O5(Nb2O5) solid solution. J.Phys.Chem.Solids. 76, 82–87 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3,. Nature Mater. 13, 31–35 (2014)CrossRefGoogle Scholar
  13. 13.
    W.G. Wang, X.Y. Li, T. Liu, G.L. Hao, Influence of A-site off-stoichiomety on grain conductivity and oxygen relaxation behavior of Na0.5Bi0.5TiO3 ceramics. Solid State Ionics 327, 117–122 (2018)CrossRefGoogle Scholar
  14. 14.
    P.C. Duke, A. Shih, S.J. Agudero, Skinner, Improvement of ionic conductivity in A-site lithium doped sodium bismuth titanate. Solid State Ionics 317, 32–38 (2018)CrossRefGoogle Scholar
  15. 15.
    W.G. Wang, X.Y. Li, T. Liu, G.L. Hao, Mechanical and dielectric relaxation studies on the fast oxide ion conductor Na0.54Bi0.46TiO2.96,. Solid State Ionics 290, 6–11 (2016)CrossRefGoogle Scholar
  16. 16.
    W.G. Wang, Study on the Electrical Conductivity and relaxation behavior of K-doped Na0.5Bi0.5TiO3 ceramics. J Mater Sci Mater El 29, 3973–3979 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Fang, P. Wu, D.C. Sinclair, Enhanced bulk conductivity of A-site divalent acceptor-doped non-stoichiometric sodium bismuth titanate. Solid State Ionics 299, 38–45 (2017)CrossRefGoogle Scholar
  18. 18.
    W.G. Wang, X.Y. Li, Impedance and dielectric relaxation spectroscopy studies on the calcium Modified Na0.5Bi0.44Ca0.06TiO2.97 ceramics. AIP Adv. 7, 125318 (2017) (8 pages)CrossRefGoogle Scholar
  19. 19.
    J.Q. Huang, F.Y. Zhu, D. Huang, B. Wang, T. Xu, X.D. Li, P.Y. Fan, F. Xia, J.Z. Xiao, H.B. Zhang, Intermediate-temperature conductivity of B-site doped Na0.5Bi0.5TiO3-based lead-free ferroelectric ceramics. Ceram. Int. 42, 16798–16803 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Lu, C.A. Lόpez, J. Wang, J.A. Alonso, C.W. Sun, Insight into the structure and functional application of Mg-doped Na0.5Bi0.5TiO3 electrolyte for solid oxide fuel cells. J. Alloy. Compd. 752, 213–219 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Fan, M. Li, L. Li, P. Wu, E. Pradal-velázque, D.C. Sinclair, Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit? J. Mater. Chem. A 5, 21658–21662 (2017)CrossRefGoogle Scholar
  22. 22.
    X.P. Wang, Q.F. Fang, Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9,. Phys. Rev. B 65, 064304 (2002) (6 pages)CrossRefGoogle Scholar
  23. 23.
    Q.F. Fang, X.P. Wang, G.G. Zhang, Z.G. Yi, Damping mechanism in the novel La2Mo2O9-based oxide-ion conductors. J. Alloy. Compd. 355, 177–182 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Structure consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122, 1–15 (1999)CrossRefGoogle Scholar
  25. 25.
    X.F. He, Y.F. Mo, Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations. Phys. Chem. Chem. Phys. 17, 18035–18044 (2015)CrossRefGoogle Scholar
  26. 26.
    C.J. Hou, Y.D. Li, P.J. Wang, C.S. Liu, X.P. Wang, Q.F. Fang, D.Y. Sun, Oxygen-ion arrangements and concerted motion in β- La2Mo2O9. Phys. Rev. B 76, 014104 (2007) (6 pages)CrossRefGoogle Scholar
  27. 27.
    A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972)Google Scholar
  28. 28.
    R. Bhattacharyya, S. Omar, Influence of excess sodium addition on the structural characteristics and electrical conductivity of Na0.5Bi0.5TiO3. Solid State Ionics. 317, 115–121 (2018)CrossRefGoogle Scholar
  29. 29.
    R. Bhattacharyya, S. Das, S. Omar, High ionic conductivity of Mg2+-doped non-stoichiometric sodium bismuth titanate. Acta Mater. 159, 8–15 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationYan’an UniversityYan’anPeople’s Republic of China

Personalised recommendations