Electrochemical glucose biosensor based on ZnO nanorods modified with gold nanoparticles

  • Xiao Fen Hoo
  • Khairunisak Abdul RazakEmail author
  • Nur Syafinaz Ridhuan
  • Noorhashimah Mohamad Nor
  • Nor Dyana Zakaria


Gold nanoparticles (AuNPs) were synthesized by seeded-growth method. Spherical AuNPs with different sizes were formed by varying the volumes of the gold seed, hydroxylamine hydrochloride, and gold chloride. Zinc oxide nanorods (ZnONRs) were also produced through hydrothermal growth on seeded indium tin oxide (ITO) substrates. Zinc acetate sol seed was dropped onto the substrates, which were then oven dried at 150 °C. After heating the substrates at 500 °C for 2 h in a preheated tube furnace to obtain the ZnO seed, the substrates were immersed in a hydrothermal solution and heated at 80 °C for 4 h to obtain ZnONRs grown on ITO substrates. The synthesized AuNPs were then drop casted onto the ZnONR/ITO substrates, which were air dried to obtain AuNP/ZnONR/ITO electrodes. Glucose oxidase (GOx) enzyme and Nafion were subsequently dropped onto these modified electrodes. The electrochemical activity of the resulting Nafion/GOx/AuNP/ZnONR/ITO electrodes in glucose detection was evaluated through cyclic voltammetry. The size and volume of the AuNPs and the volume of GOx enzyme were found to influence the electrochemical activity. The optimized electrode consisting of Nafion, 60 µL of GOx, 80 µL of 30 nm AuNPs, ZnONRs, and ITO exhibited a low limit of detection of 0.18 mM and high sensitivities of 14.53 and 2.54 µA mM−1 cm−2 within a wide working range of 0.05–1.0 and 1.0–20 mM, respectively.



The authors appreciate the technical assistance provided by the School of Materials and Mineral Resources Engineering, Institute for Research in Molecular Medicine and NOR Laboratory, USM. This research was supported by the TRGS Grant 203/Pbahan/6763001 and the RU Top Down 1001/Pbahan/870049.


  1. 1.
    K.G.M.M. Alberti, P.Z. Zimmet, Diabet. Med. 15, 539–553 (1998)CrossRefGoogle Scholar
  2. 2.
    K.J. Cash, H.A. Clark, Trends Mol. Med. 16, 584–593 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Taguchi, A. Ptitsyn, E.S. McLamore, J.C. Claussen, J. Diabetes Sci. Technol. 8, 403–411 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Fu, K.J. Lee, K. Lee, S.S. Yang, Smart Mater. Struct. 24, 015010 (2015)CrossRefGoogle Scholar
  5. 5.
    T.S. Van Den Heever, W.J. Perold, Smart Mater. Struct. 22, 105029 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Chenchen, H. Shuling, S. Shengping, Smart Mater. Struct. 21, 115024 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Tian, S. Alex, G. Siegel, A. Tiwari, Mater. Sci. Eng. C 46, 548–552 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Karuppiah, M. Velmurugan, S.-M. Chen, S.-H. Tsai, B.-S. Lou, M. Ajmal, Ali, F.M.A. Al-Hemaid, Sensors Actuators B 221, 1299–1306 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, L. Jin, Biosensors Bioelectron. 26, 275–278 (2010)CrossRefGoogle Scholar
  10. 10.
    L.Y. Chen, X.Y. Lang, T. Fujita, M.W. Chen, Scr. Mater. 65, 17–20 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Sun, D. Zhao, Z. Song, C. Shan, Z. Zhang, B. Li, D. Shen, J. Colloid Interface Sci. 363, 175–181 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Fu, F. Liang, H. Tian, J. Hu, Electrochim. Acta 120, 314–318 (2014)CrossRefGoogle Scholar
  13. 13.
    D.R. Kumar, D. Manoj, J. Santhanalakshmi, RSC Adv. 4, 8943–8952 (2014)CrossRefGoogle Scholar
  14. 14.
    H.T. Chou, J.H. Lin, H.C. Hsu, T.M. Wu, C. Liu, Int. J. Electrochem. Sci. 10, 519–528 (2015)Google Scholar
  15. 15.
    C. Bhattacharya, V.P. Jain, Rao, S. Banerjee, in AIP Conference Proceedings, vol. 1447 (2012), pp. 295–296Google Scholar
  16. 16.
    M.M. Rahman, A.J.S. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, Sensors 10, 4855–4886 (2010)CrossRefGoogle Scholar
  17. 17.
    N.S. Ridhuan, K. Abdul Razak, Z. Lockman, A. Abdul Aziz, PLoS ONE 7, e50405 (2012)CrossRefGoogle Scholar
  18. 18.
    N.S. Ridhuan, K. Abdul, Razak, Z. Lockman, Sci. Rep. 8, 13722 (2018)CrossRefGoogle Scholar
  19. 19.
    E.-H. Yoo, S.-Y. Lee, Sensors 10, 4558–4576 (2010)CrossRefGoogle Scholar
  20. 20.
    A.P. Periasamy, Y.-J. Chang, S.-M. Chen, Bioelectrochemistry 80, 114–120 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Siti Rabizah, R. Khairunisak Abdul, N. Rahmah, Z. Nor Dyana, C. Tan Soo, Nanotechnology 23, 495719 (2012)CrossRefGoogle Scholar
  22. 22.
    X.-F. Hoo, K.A. Razak, N.S. Ridhuan, N.M. Nor, N.D. Zakaria, in AIP Conference Proceedings, vol. 1877 (2017), p. 030001Google Scholar
  23. 23.
    K.N. Clayton, J.W. Salameh, S.T. Wereley, T.L. Kinzer-Ursem, Biomicrofluidics 10, 054107 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149, 1919–1923 (2009)CrossRefGoogle Scholar
  25. 25.
    X. Hou, L. Wang, G. He, J. Hao, CrystEngComm. 14, 5158–5162 (2012)CrossRefGoogle Scholar
  26. 26.
    L. Fang, B. Liu, L. Liu, Y. Li, K. Huang, Q. Zhang, Sensors Actuators B 222, 1096–1102 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Ambrozy, Hlavata, J. Labuda, Acta Chim. Slovoca 6, 35–41 (2013)CrossRefGoogle Scholar
  28. 28.
    K.-J. Chen, C.-F. Lee, J. Rick, S.-H. Wang, C.-C. Liu, B.-J. Hwang, Biosensors Bioelectron. 33, 75–81 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Jin, C.C. Jonathan, S.M. Eric, H. Aeraj ul, J. David, R.D. Alfred, C.-M. Percy, L.R. Jenna, D.M. Porterfield, Nanotechnology 22, 355502 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Shrivastava, V. Gupta, Chron. Young Sci. 2, 21–25 (2011)CrossRefGoogle Scholar
  31. 31.
    A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, Anal. Chem. 56, 667–669 (1984)CrossRefGoogle Scholar
  32. 32.
    D. Bruen, C. Delaney, L. Florea, D. Diamond, Sensors (Basel, Switzerland) 17, 1866 (2017)CrossRefGoogle Scholar
  33. 33.
    G. Aydoǧdu, D.K. Zeybek, Ş. Pekyardimci, E. Kiliç, Artif. Cells Nanomed. Biotechnol. 41, 332–338 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, S. Yuan, L. Yang, Z. Fang, G.-C. Zhao, Microchim. Acta 180, 627–633 (2013)CrossRefGoogle Scholar
  35. 35.
    A.A. Saei, J.E.N. Dolatabadi, P. Najafi-Marandi, A. Abhari, M. de la Guardia, Trends Anal. Chem. 42, 216–227 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiao Fen Hoo
    • 1
  • Khairunisak Abdul Razak
    • 1
    • 2
    Email author
  • Nur Syafinaz Ridhuan
    • 1
  • Noorhashimah Mohamad Nor
    • 1
  • Nor Dyana Zakaria
    • 2
  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular MedicineUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations