Effect on reliability and thermal stability of BaxSr2−xSiO4:Eu2+ phosphor film for LED applications

  • Xinglu Qian
  • Changran Zheng
  • Mingming Shi
  • Bobo Yang
  • Yang LiEmail author
  • Zizhuan Liu
  • Fei Zheng
  • Jun ZouEmail author


Europium doping strontium silicate barium phosphors [BaxSr2−xSiO4:0.02Eu2+ (x = 0, 0.2, 0.5, 0.8, 1, 1.5 and 2)] were successfully prepared by conventional solid-state reaction technology, and the phosphor films are prepared from the synthesized BaxSr2−xSiO4:0.02Eu2+ (x = 0, 0.2, 0.5, 0.8, 1, 1.5 and 2) phosphors by a simple spin coating methods. The influence of different content of Ba2+ doping on the photoluminescence (PL) spectra, thermal stability and reliability of prepared BaxSr2−xSiO4:0.02Eu2+ (x = 0, 0.5, 1, 1.5 and 2) phosphors and phosphor films were investigated. As Ba2+ concentration increased from 0 to 2, the photoluminescence spectra peaks of phosphor shifted from 570 to 511 nm and the photoluminescence spectra peaks of phosphor films shifted from 568 to 513 nm under the excitation of 460 nm. It can be summarized that the increase of Ba concentration increased the thermal stability (improve about 30%) and enhanced the reliability (improve about 7%) largely when the x value is x is not greater than 1, whether it is phosphor or film. However, it seems that phosphor and phosphor films couldn’t improve with the increase of Ba2+ after the xenon lamp aging test. What is more, the three kinds of experiments show that the BaxSr2−xSiO4:0.02Eu2+ phosphor films with different Ba2+ concentration have better reliability (improve about 10%) than the BaxSr2−xSiO4:0.02Eu2+ phosphors with different Ba2+ concentration.



Xinglu Qian and Changran Zheng contributed equally to this work. The work was supported by the Science and Technology Planning Project of Zhejiang Province, China (2018C01046), Enterprise-funded Latitudinal Research Projects (J2016-141), (J2017-171), (J2017-293), (J2017-243).


  1. 1.
    T. Pulli, T. Dönsberg, T. Poikonen et al., Advantages of white LED lamps and new detector technology in photometry. Light Sci. Appl., 4(9), e332 (2015)CrossRefGoogle Scholar
  2. 2.
    Y.H. Kim, N.S.M. Viswanath, S. Unithrattil et al. Review—phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting. ECS J. Solid State Sci. Technol. 7(1): R3134–R3147 (2018)Google Scholar
  3. 3.
    S. Pimputkar, J.S. Speck, S.P. Denbaars et al., Prospects for LED lighting. Nat. Photonics 3(4), 180–182 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Tonzani, Time to change the BULB. Nature 459(7245), 312–314 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Liu, X. Luo, LED packaging for lighting applications: design, manufacturing and testing. (Wiley, New York, 2011)CrossRefGoogle Scholar
  6. 6.
    Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater Sci. 84, 59–117 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Winston, B. Parkyn, R.J. Koshel et al., Remote phosphor with recycling blue-pass mirror. vol. 5942, (2005), p. 59420Google Scholar
  8. 8.
    H. Xiao, Y.-J. Lu, T.-M. Shih et al., Improvements on remote diffuser-phosphor-packaged light-emitting diode systems. IEEE Photonics J. 6(2), 1–8 (2014)CrossRefGoogle Scholar
  9. 9.
    Y.H. Kim, N.S.M. Viswanath, S. Unithrattil et al., Review—phosphor plates for high-power led applications: challenges and opportunities toward perfect lighting. ECS J. Solid State Sci. Technol. 7(1), R3134–R3147 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Arunkumar, Y.H. Kim, H.J. Kim et al., Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices. Acs Appl. Mater. Interfaces 9(8), 7232–7240 (2017)CrossRefGoogle Scholar
  11. 11.
    W.B. Im, N. George, J. Kurzman et al., Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting. Adv. Mater. 23(20), 2300–2305 (2011)CrossRefGoogle Scholar
  12. 12.
    N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43(43), 481–501 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Jia, A. Zhang, D. Li et al., Preparation and properties of the flexible remote phosphor film for blue chip-based white LED. Mater. Des. 102, 8–13 (2016)CrossRefGoogle Scholar
  14. 14.
    S.P. Ying, H.K. Fu, H.Z. Tu, Curved remote phosphor structure for phosphor-converted white LEDs. Appl. Opt. 53(29), 160–164 (2014)CrossRefGoogle Scholar
  15. 15.
    S.C. Allen, A.J. Steckl, A nearly ideal phosphor-converted white light-emitting diode. Appl. Phys. Lett. 92(14), 128 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Luo, K.S. Kim, E.F. Schubert et al., Analysis of high-power packages for phosphor-based white-light-emitting diodes. Appl. Phys. Lett. 86(24), 380 (2005)CrossRefGoogle Scholar
  17. 17.
    K. Pal, M.M. Mohan, M. Foley et al., Emerging assembly of ZnO-nanowires/graphene dispersed liquid crystal for switchable device modulation. Org. Electron. 56, 291–304 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Yu, Z. Li, G. Liang et al., Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film. Photon. Res. 4(4), 140 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Chen, W. Long, H. Xin et al., Discrete optical field manipulation by Ag–Al Bilayer Gratings for broadband absorption enhancement in thin-film solar cells. Plasmonics 3, 1–11 (2017)Google Scholar
  20. 20.
    L. Xiang, H. Zheng, G. Xing et al., Optical performance enhancement of quantum dot-based light-emitting diodes through an optimized remote structure. IEEE Trans. Electron Devices 63(2), 691–697 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Pal, S. Sajjadifar, M.A. Elkodous et al., Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. 15, 1–18 (2018)Google Scholar
  22. 22.
    N. Narendran, Y. Gu, J.P. Freyssinier-Nova et al., Extracting phosphor-scattered photons to improve white LED efficiency. Physica status solidi 202(6): R60–R62 (2005)CrossRefGoogle Scholar
  23. 23.
    Y. Li, L. Hu, B. Yang et al., Effect of sintering temperature on the photoluminescence properties of red-emitting color conversion glass. J. Mater. Sci. Mater. Electron. 29(3), 2035–2039 (2018)CrossRefGoogle Scholar
  24. 24.
    W. Tian, K. Song, F. Zhang et al., Optical spectrum adjustment of yellow–green Sr 1.99 SiO4 – 3x/2N x:0.01Eu2+ phosphor powders for near ultraviolet–visible light application. J. Alloys Compounds 638, 249–253 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Pawar, A. Jadhav, W.K. Chang et al., Emission controlled dual emitting Eu-doped CaMgSi2O6 nanophosphors. J. Lumin. 157, 131–136 (2015)CrossRefGoogle Scholar
  26. 26.
    L.E. Muresan, B.F. Oprea, A.I. Cadis et al., Studies on Y2 SiO5:Ce phosphors prepared by gel combustion using new fuels. J. Alloys Compounds 615(2), 795–803 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Hong, Y. Lai, G. Gao et al., Photoluminescence and energy transfer studies on Eu2+ and Ce 3 + co-doped SrCaSiO4 for white light-emitting-diodes. J. Alloys Compounds 509(23), 6635–6639 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Li, L. Hu, B. Yang et al., Thermal stability and reliability studies of (Sr, Ca) AlSiN3:Eu2+ phosphors for LED application. J. Mater. Sci. Mater. Electron. 28(4), 1–9 (2017)Google Scholar
  29. 29.
    J.H. Lee, Y.J. Kim, Photoluminescent properties of Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method. Mater. Sci. Eng. B 146(1), 99–102 (2008)CrossRefGoogle Scholar
  30. 30.
    C.H. Hsu, R. Jagannathan, C.H. Lu, Luminescent enhancement with tunable emission in Sr 2SiO4: Eu2+ phosphors for white LEDs. Mater. Sci. Eng. B 167(3), 137–141 (2010)CrossRefGoogle Scholar
  31. 31.
    B. Zhang, X. Yu, T. Wang et al., Photostimulated and long persistent luminescence properties from different crystallographic sites of β-Sr2SiO4: Eu2+, R3+ (R = Tm, Gd). J. Am. Ceram. Soc. 98(1), 171–177 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Li, L. Hu, B. Yang et al., Effect of hydrogen annealing on the photoluminescence properties of colour conversion glass in borosilicate glass. J. Alloys Compounds, 708,1201–1205(2016)Google Scholar
  33. 33.
    K.A. Denault, J. Brgoch, M.W. Gaultois et al., Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2–xSiO4:Eu2+ orthosilicate phosphors. Chem. Mater. 26(7), 2275–2282 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Kitamura, Y. Ueda, S. Ishizaka et al., Temperature dependent emission of hexarhenium(III) clusters [Re6(µ3-S)8 × 6]4- (X = Cl-, Br-, and I-): analysis by four excited triplet-state sublevels. Inorg. Chem. 44(18), 6308–6313 (2005)CrossRefGoogle Scholar
  35. 35.
    Z. Pan, H. He, R. Fu et al., Influence of Ba2+-doping on structural and luminescence properties of Sr2SiO4:Eu2+ PHOSPHORS. J. Lumin. 129(9), 1105–1108 (2009)CrossRefGoogle Scholar
  36. 36.
    X. Luo, X. Fu, F. Chen et al., Phosphor self-heating in phosphor converted light emitting diode packaging. Int. J. Heat Mass Transfer 58(1–2), 276–281 (2013)CrossRefGoogle Scholar
  37. 37.
    J.S. Kim, H.P. Yun, C.C. Jin et al., Optical and structural properties of Eu2+ -doped (Sr1–xBax) 2SiO4 phosphors. J. Electrochem. Soc. 152(9), H135–H137 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Zou, B. Yang, S. Zhu et al., Enhancement of thermal stability and reliability of BaxSr2−xSiO4:Eu2+ phosphors by Ba2+ doping. J. Mater. Sci. Mater. Electron. 27(12), 13199–13208 (2016)CrossRefGoogle Scholar
  39. 39.
    I. Baginskiy, R.S. Liu, C.L. Wang et al., Temperature dependent emission of strontium-barium orthosilicate (Sr2–xBax)SiO4:Eu2 + phosphors for high-power white light-emitting diodes. J. Electrochem. Soc. 158(10), P118 (2011)CrossRefGoogle Scholar
  40. 40.
    J.S. Kim, H.P. Yun, M.K. Sun et al., Temperature-dependent emission spectra of M2 SiO4:Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun. 133(7), 445–448 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xinglu Qian
    • 1
  • Changran Zheng
    • 3
  • Mingming Shi
    • 1
  • Bobo Yang
    • 1
  • Yang Li
    • 2
    Email author
  • Zizhuan Liu
    • 1
  • Fei Zheng
    • 1
  • Jun Zou
    • 1
    • 4
    Email author
  1. 1.School of ScienceShanghai Institute of TechnologyShanghaiChina
  2. 2.School of Material Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  3. 3.School of Material Science and EngineeringChangchun University of Science and TechnologyChangchunChina
  4. 4.Institute of New Materials & Industrial TechnologyWenZhou UniversityWenzhouChina

Personalised recommendations