Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight

  • Gajanan Kale
  • Sudhir Arbuj
  • Ujjwala Kawade
  • Sunil Kadam
  • Latesh Nikam
  • Bharat KaleEmail author


Cu-doped zinc oxide (Cu–ZnO) nanostructure was prepared using Whatman filter paper as a template by combustion method. For the synthesis of porous Cu–ZnO nanostructures the stoichiometric amount of precursors were impregnated in the filter papers and processed, thermally. The formation of wurtzite phase having crystallite size in the range of 20–24 nm was confirmed by X-ray diffraction (XRD) analysis. The morphological study by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) shows size of nanoparticles in the range of 25–50 nm. The optical study shows red shift i.e. extended absorbance in the visible region due to Cu doping. The photoluminescence study of Cu–ZnO results quenching in the photoluminescence peak as effect of Cu doping in ZnO lattice. Considering the extended band gap in the visible region of as synthesized Cu–ZnO, the photocatalytic dye degradation activity of methylene blue (MB) was executed in presence of sunlight irradiation. The effect of salt concentration and PH on dye degradation activity also studied. The highest photocatalytic activity was observed for Cu–ZnO with 4% doping as compared with other Cu–ZnO and ZnO nanostructure. The photocatalytic performance of Cu–ZnO shows complete degradation of MB dye within 30 min for 4% Cu–ZnO nanostructure. The photocatalytic activity obtained is much higher as compare to earlier reports. The synthesis of Cu doped ZnO by paper templated method and its photocatalytic activity is hitherto unattempted.



Gajanan Kale et al. would like to thank to C-MET Pune for providing research facilities. Authors would like to thank Nanocrystalline materials group for kind support.


  1. 1.
    S.R. Kadam, V.R. Mate, R.P. Panmand, L.K. Nikam, M.V. Kulkarni, R.S. Sonawane, B.B. Kale, A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 4, 60626–60635 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Yu, M. Jaroniec, Energy and environmental photocatalytic materials. Appl. Surf. Sci. 391, 71 (2017)CrossRefGoogle Scholar
  3. 3.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)Google Scholar
  4. 4.
    C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind. Eng. Chem. Res. 53, 14641–14649 (2014)CrossRefGoogle Scholar
  5. 5.
    V. Maharugade, T. Thorve, Y. Hulawale, S. Kadam, R. Panmand, Y. Sethi, M. Chaskar, L. Nikam, Solar light driven nanostructured Fe and Cu doped TiO2 photocatalyst for degradation of phenol. J. Nanoeng. Nanomanuf. 5, 304–309 (2015)CrossRefGoogle Scholar
  6. 6.
    S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2013)CrossRefGoogle Scholar
  7. 7.
    H.R. Rajabi, M. Farsi, Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Sharma, T. Jain, S. Singh, O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Vis light using capped ZnS nanoparticles. Sol. Energy 86, 626–633 (2012)CrossRefGoogle Scholar
  9. 9.
    H.S. Arif, G. Murtaza, H. Hanif, H.S. Ali, M. Yaseen, N.R. Khalid, Effect of La on structural and photocatalytic activity of SnO2 nanoparticles under UV irradiation. J. Environ. Chem. Eng. 5, 3844–3851 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Roy, S. Arbuj, Y. Waghadkar, M. Shinde, G. Umarji, S. Rane, K. Patil, S. Gosavi, R. Chauhan, Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J. Solid State Electrochem. 21, 9–17 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29, 13737–13745 (2018)Google Scholar
  12. 12.
    P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu. Int. J. Hydrogen Energy 38, 11840–11846 (2013)CrossRefGoogle Scholar
  13. 13.
    S.R. Kadam, D.J. Late, R.P. Panmand, M.V. Kulkarni, L.K. Nikam, S.W. Gosavi, C.J. Park, B.B. Kale, Nanostructured 2D MoS2 honeycomb and hierarchical 3D CdMoS4 marigold nanoflowers for hydrogen production under solar light. J. Mater. Chem. A 3, 21233–21243 (2015)CrossRefGoogle Scholar
  14. 14.
    M.T. Uddin, Y. Nicolas, T. Olivier, C.I. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012)CrossRefGoogle Scholar
  15. 15.
    C.A. Jaramillo-Páez, J.A. NavÃo, M.C. Hidalgo, M. MacÃas, ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal. Today 313, 12 (2017)CrossRefGoogle Scholar
  16. 16.
    S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today 260, 126–134 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang, D. Li, Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. Sens. Actuators B 241, 895–903 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386–397 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Yasuo, Admittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys. 30, 703 (1991)CrossRefGoogle Scholar
  21. 21.
    K.R. Chandrasekhar, J.D. Ambekar, S.B. Rane, S.S. Arbuj, Solvothermal synthesis of photoluminescent ZnO nanostructures and its photocatalytic application study. J. Nanoeng. Nanomanuf. 5, 77–81 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Hydrothermal synthesis of dumbbell-shaped ZnO microstructures. Ceram. Int. 39, 8969–8973 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Music, A. Saric, S. Popovic, Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram. Int. 36, 1117–1123 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403–404, 485–488 (2002)CrossRefGoogle Scholar
  25. 25.
    G. Kale, S. Arbuj, V. Kawade, U. Rane, S. Ambekar, J.B. Kale, Porous N-doped zinc oxide nanostructure by novel paper mediated template method and its photocatalytic study for dye degradation under natural sunlight. Mater. Chem. Front. 2, 163–170 (2017)CrossRefGoogle Scholar
  26. 26.
    S.S. Arbuj, R.R. Hawaldar, U.P. Mulik, B.N. Wani, D.P. Amalnerkar, S.B. Waghmode, Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater. Sci. Eng. B 168(1), 90–94 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates As capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757–3769 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012)CrossRefGoogle Scholar
  29. 29.
    P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13(4), 1629–1637 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Askarinejad, A. Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem 16, 124–131 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Fu, Y. Li, S. wu, P. Lu, J. Liu, F. Dong, Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Mergoramadhayenty, M. Lusitra, S. Rosari, Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu2+ ions. Mater. Sci. Appl. 3(8), 543 (2012)Google Scholar
  33. 33.
    A. Ghosh, N. Kumari, A. Bhattacharjee, Influence of Cu doping on the structural, electrical and optical properties of ZnO. Pramana 84, 621–635 (2015)CrossRefGoogle Scholar
  34. 34.
    H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater. 250–251, 370–378 (2013)CrossRefGoogle Scholar
  35. 35.
    X.-Y. Li, H.-J. Li, M. Yuan, Z.-J. Wang, Z.-Y. Zhou, R.-B. Xu, Influence of oxygen partial pressure on electrical and optical properties of Zn0.93 Mn0.07O thin films. J. Alloy. Compd. 509, 3025–3031 (2011)CrossRefGoogle Scholar
  36. 36.
    A. Bhirud, S. Sathaye, R. Waichal, C.-J. Park, B. Kale, In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J. Mater. Chem. A 3, 17050–17063 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Liqiang, W. Dejun, W. Baiqi, L. Shudan, X. Baifu, F. Honggang, S. Jiazhong, Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J. Mol. Catal. A: Chem. 244, 193–200 (2006)CrossRefGoogle Scholar
  38. 38.
    X.H. Wang, S. Liu, P. Chang, Y. Tang, Influence of S incorporation on the luminescence property of ZnO nanowires by electrochemical deposition. Phys. Lett. A 372, 2900–2903 (2008)CrossRefGoogle Scholar
  39. 39.
    H. Bai, Z. Liu, D.D. Sun, Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys. Chem. Chem. Phys. 13, 6205–6210 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2018)CrossRefGoogle Scholar
  42. 42.
    S.S. Arbuj, U.P. Mulik, D.P. Amalnerkar, Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity. Nanosci. Nanotechnol. Lett. 5, 968–973 (2013)CrossRefGoogle Scholar
  43. 43.
    V.G. Deonikar, S.S. Patil, M.S. Tamboli, J.D. Ambekar, M.V. Kulkarni, R.P. Panmand, G.G. Umarji, M.D. Shinde, S.B. Rane, N.R. Munirathnam, D.R. Patil, B.B. Kale, Growth study of hierarchical Ag3PO4/LaCO3OH heterostructures and their efficient photocatalytic activity for RhB degradation. Phys. Chem. Chem. Phys. 19, 20541–20550 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Shamsipur, H.R. Rajabi, Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 260–267 (2014)CrossRefGoogle Scholar
  45. 45.
    R.C. Pawar, D.-H. Choi, J.-S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)CrossRefGoogle Scholar
  46. 46.
    T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 288 (2015)CrossRefGoogle Scholar
  47. 47.
    S.-H. Chang, P.-Y. Yang, C.-M. Lai, S.-C. Lu, G.-A. Li, W.-C. Chang, H.-Y. Tuan, Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts. CrystEngComm 18, 616–621 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Sriram, K.C. Lalithambika, A. Thayumanavan, Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik 139, 299–308 (2017)CrossRefGoogle Scholar
  49. 49.
    J.R. Torres-Hernández, E. RamÃrez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, B. Escobar-Morales, M. Acosta-Alejandro, L.L. DÃaz-Flores, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 37, 87–92 (2015)CrossRefGoogle Scholar
  50. 50.
    W.L. Wang, C.X. Yang, F. Zhang, P. Li, G.W. Cui, Remarkable sunlight photocatalytic activity due to synergetic effect of ZnO with Cu. Key Eng. Mater. 727, 388–394 (2017)CrossRefGoogle Scholar
  51. 51.
    S.P. Meshram, P.V. Adhyapak, D.P. Amalnerkar, I.S. Mulla, Cu doped ZnO microballs as effective sunlight driven photocatalyst. Ceram. Int. 42, 7482–7489 (2016)CrossRefGoogle Scholar
  52. 52.
    A.A. Abdel-Khalek, S.A. Mahmoud, A.H. Zaki, Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ. Nanotech. Monit. Manage. 9, 164–173 (2018)Google Scholar
  53. 53.
    F.D. Mai, C.C. Chen, J.L. Chen, S.C. Liu, Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. J. Chromatogr. A 1189, 355–365 (2008)CrossRefGoogle Scholar
  54. 54.
    A. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 22, 371–381 (2015)CrossRefGoogle Scholar
  55. 55.
    R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127, 7143–7154 (2016)CrossRefGoogle Scholar
  56. 56.
    M.J. Uddin, M.A. Islam, S.A. Haque (2001) Preparation of nanostructured tio2-based photocatalyst by controlling the calcining temperature and ph. Int. Nano Lett. 2, 19CrossRefGoogle Scholar
  57. 57.
    H. Sudrajat, S. Babel, A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J. Water Process Eng. 16, 309–318 (2017)CrossRefGoogle Scholar
  58. 58.
    X. Liu, Y. Yang, X. Shi, K. Li, Fast photocatalytic degradation of methylene blue dye using a low-power diode laser. J. Hazard. Mater. 283, 267–275 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gajanan Kale
    • 1
  • Sudhir Arbuj
    • 1
  • Ujjwala Kawade
    • 1
  • Sunil Kadam
    • 1
  • Latesh Nikam
    • 2
  • Bharat Kale
    • 1
    Email author
  1. 1.Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY)Government of IndiaPuneIndia
  2. 2.Baburaoji Gholap CollegePuneIndia

Personalised recommendations