Advertisement

Enhancement of radiative transitions in Sm3+ activated CaTiO3 nanophosphor by modulating co-activator concentration

  • Angshuman Santra
  • Karamjyoti Panigrahi
  • Subhajit Saha
  • Nilesh MazumderEmail author
  • Ashis Ghosh
  • Suvajit Bakuli
  • Kalyan K. Chattopadhyay
  • Uttam Kumar GhoraiEmail author
Article
  • 2 Downloads

Abstract

In present era, rare earth doped nanophosphors are the key architecture in the development of white light-emitting diodes (WLEDs) and their performance has become a major topic of interest among the researchers. Still, the deficiency of orange phosphor has become a barrier for the commercialization of the WLED. In this work, single phase intense orange light emitting Na+ co-activated CaTiO3 (CTO):Sm3+ nanophosphor is synthesized via modified sol–gel method with an average particle size of 60 nm. The synthesized nanophosphor strongly exhibits bright orange emission under 408 nm excitation. Comparative photoluminescence (PL) analysis of CTO:Sm3+ and Na+ co-doped CTO:Sm3+ nanophosphors irrefutably reveals that incorporation of Na+ facilitates almost threefold increase in the luminescence intensity along with significant improvement in thermal stability. Obtained results conclusively suggest that strong orange emitting Na+ co-activated Sm3+ doped CTO nanophosphor could be a potential candidate for use in blue light chip based warm WLED and others lighting device applications.

Notes

Acknowledgements

The authors would like to acknowledge the Principal Maharaj (Swami Shastrajnananda) and Vice Principal Maharaj (Swami Ekachittananda) of the Ramakrishna Mission Vidyamandira for their keen interest in the work. The authors would also like to acknowledge Department of Science & Technology (DST), Govt. of India and Department of Higher Education, Govt. of West Bengal for financial assistance. One of the authors Karamjyoti Panigrahi would like to acknowledge Council of Scientific & Industrial Research (CSIR) for awarding him CSIR-Direct SRF award during the tenure of this work. The authors would like to express the gratitude to Mr. Soumyadip Mondal, Mr. Jotypriya Sarkar, Mr. Rabi Ranjan Roy, Mr. Shyamal Murmu and Mr. Amal Gain for their technical assistance.

Supplementary material

10854_2019_902_MOESM1_ESM.docx (419 kb)
Supplementary material 1 (DOCX 419 KB)

References

  1. 1.
    D.V. Talapin, A.L. Rogach, A. Kornowski et al., Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett. 1, 207–211 (2001).  https://doi.org/10.1021/nl0155126 CrossRefGoogle Scholar
  2. 2.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec et al., (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).  https://doi.org/10.1021/jp971091y CrossRefGoogle Scholar
  3. 3.
    X. Zhang, M. Gong, Single-phased white-light-emitting NaCaBO3:Ce 3+,Tb 3+, Mn2+ phosphors for LED applications. Dalton Transac. 43, 2465–2472 (2014).  https://doi.org/10.1039/C3DT52328D CrossRefGoogle Scholar
  4. 4.
    S. Tanaka, I. Ozaki, T. Kunimoto et al., Blue emitting CaAl2O4: Eu2+ phosphors for PDP application. J. Lumin. 87–89, 1250–1253 (2000).  https://doi.org/10.1016/S0022-2313(99)00544-X CrossRefGoogle Scholar
  5. 5.
    C.C. Kang, R.S. Liu, The effect of terbium concentration on the luminescent properties of yttrium oxysulfide phosphor for FED application. J. Lumin. 122–123, 574–576 (2007).  https://doi.org/10.1016/j.jlumin.2006.01.228 CrossRefGoogle Scholar
  6. 6.
    K. Panigrahi, S. Saha, S. Sain et al., White light emitting MgAl2O4:Dy3+,Eu3+ nanophosphor for multifunctional applications. Dalton Transac. 47, 12228–12242 (2018).  https://doi.org/10.1039/c8dt02227e CrossRefGoogle Scholar
  7. 7.
    A. Das, S. Saha, K. Panigrahi et al., Morphology control and photoluminescence properties of Eu3+-activated Y4Al2O9 nanophosphors for solid state lighting applications. CrystEngComm 20, 2540–2552 (2018).  https://doi.org/10.1039/C8CE00289D CrossRefGoogle Scholar
  8. 8.
    K.N. Shinde, S.J. Dhoble, A. Kumar, Combustion synthesis of Ce3+, Eu3+ and Dy 3+ activated NaCaPO4 phosphors. J. Rare Earths 29, 527–535 (2011).  https://doi.org/10.1016/S1002-0721(10)60492-9 CrossRefGoogle Scholar
  9. 9.
    I.M. Nagpure, V.B. Pawade, S.J. Dhoble, Combustion synthesis of Na2Sr(PO4)F:Dy3+ white light emitting phosphor. Luminescence 25, 9–13 (2010).  https://doi.org/10.1002/bio.1132 Google Scholar
  10. 10.
    G.B. Nair, S.J. Dhoble, Highly enterprising calcium zirconium phosphate [CaZr4(PO4)6:Dy3+, Ce3+] phosphor for white light emission. RSC Adv. 5, 49235–49247 (2015).  https://doi.org/10.1039/c5ra07306e CrossRefGoogle Scholar
  11. 11.
    A. Vishwakarma, M. Jayasimhadri (2016) Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid—state lighting applications. J. Lumin. 176, 112–117CrossRefGoogle Scholar
  12. 12.
    I.M. Nagpure, K.N. Shinde, V. Kumar et al., Combustion synthesis and luminescence investigation of Na3Al2(PO4)3:RE (RE = Ce3+, Eu3+ and Mn2+) phosphor. J. Alloys Compd. 492, 384–388 (2010).  https://doi.org/10.1016/j.jallcom.2009.11.110 CrossRefGoogle Scholar
  13. 13.
    S.J. Dhoble, S.V. Moharil, T.K. Gundu Rao, Correlated ESR, PL and TL studies on Sr5(PO4)3Cl:Eu thermoluminescence dosimetry phosphor. J. Lumin. 126, 383–386 (2007).  https://doi.org/10.1016/j.jlumin.2006.08.098 CrossRefGoogle Scholar
  14. 14.
    I.M.Ã Nagpure, S. Saha, S.J. Dhoble, Photoluminescence and thermoluminescence characterization of Eu3+- and Dy3+-activated Ca3(PO4)2 phosphor. J. Lumin. 129, 898–905 (2009).  https://doi.org/10.1016/j.jlumin.2009.03.034 CrossRefGoogle Scholar
  15. 15.
    S.C. Gedam, S.J. Dhoble, S.V. Moharil, Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M = Dy3+ or Mn2+) new phosphors. J. Lumin. 121, 450–455 (2006).  https://doi.org/10.1016/j.jlumin.2005.11.007 CrossRefGoogle Scholar
  16. 16.
    B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Photoluminescence in GdVO4:Bi3+, Eu3+ red phosphor. Appl. Phys. A 70, 39–45 (2000).  https://doi.org/10.1007/s003390050008 CrossRefGoogle Scholar
  17. 17.
    A. Kumar, G. Kedawat, P. Kumar et al., Sunlight-activated Eu2+/Dy3+ doped SrAl2O4 water resistant phosphorescent layer for optical display and defence applications. N. J. Chem. 39, 3380–3387 (2015).  https://doi.org/10.1039/C4NJ02333A CrossRefGoogle Scholar
  18. 18.
    R. Yadav, A.F. Khan, A. Yadav et al., Intense red-emitting Y4Al2O9: Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel. Opt. Express 17, 22023–22030 (2009).  https://doi.org/10.1364/OE.17.022023 CrossRefGoogle Scholar
  19. 19.
    S. Saha, S. Das, U.K. Ghorai et al., Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications. Dalton Transac. 42, 12965 (2013).  https://doi.org/10.1039/c3dt51411k CrossRefGoogle Scholar
  20. 20.
    B.K. Gupta, D. Haranath, S. Saini, V.N. Singh, V. Shanker, Synthesis and characterization of ultra-fine Y2O3 :Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21, 55607 (2010)CrossRefGoogle Scholar
  21. 21.
    B.K. Gupta, A. Kumar, P. Kumar et al., Probing on green long persistent Eu2+/Dy3+ doped Sr3SiAl4O11 emerging phosphor for security applications. J. Appl. Phys. 117, 243104 (2015).  https://doi.org/10.1063/1.4922983 CrossRefGoogle Scholar
  22. 22.
    I.M. Pinatti, T.M. Mazzo, R.F. Gonçalves et al. (2016) CaTiO3 and Ca1−3xSmxTiO3 : photoluminescence and morphology as a result of hydrothermal microwave methodology. Ceram. Int. 42:1352–1360.  https://doi.org/10.1016/j.ceramint.2015.09.074 CrossRefGoogle Scholar
  23. 23.
    J. Li, Y.C. Zhang, T.X. Wang, M. Zhang, Low temperature synthesis and optical properties of CaTiO3 nanoparticles from Ca(NO3)2·4H2O and TiO2 nanocrystals. Mater. Lett. 65, 1556–1558 (2011).  https://doi.org/10.1016/j.matlet.2011.03.031 CrossRefGoogle Scholar
  24. 24.
    M.L. Moreira, E.C. Paris, G.S. do Nascimento et al., Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Mater. 57, 5174–5185 (2009).  https://doi.org/10.1016/j.actamat.2009.07.019 CrossRefGoogle Scholar
  25. 25.
    H.F. Kay, P.C. Bailey, Structure and properties of CaTiO3. Acta Crystallogr. 10, 219–226 (1957).  https://doi.org/10.1107/S0365110X57000675 CrossRefGoogle Scholar
  26. 26.
    H. Lin, E.Y.B. Pun, X. Wang, X. Liu, Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses. J. Alloys Compd. 390, 197–201 (2005).  https://doi.org/10.1016/j.jallcom.2004.07.068 CrossRefGoogle Scholar
  27. 27.
    G. Blasse, A. Bril, Study of energy transfer from Sb3+, Bi3+, Ce 3+ to Sm3+, Eu3+, Tb3+, Dy3+. J. Chem. Phys. 47, 1920–1926 (1967).  https://doi.org/10.1063/1.1712219 CrossRefGoogle Scholar
  28. 28.
    Z. Wang, H. Liang, M. Gong, Q. Su, Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2. Opt. Mater. (Amst) 29, 896–900 (2007).  https://doi.org/10.1016/j.optmat.2005.12.010 CrossRefGoogle Scholar
  29. 29.
    D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954).  https://doi.org/10.1063/1.1740265 CrossRefGoogle Scholar
  30. 30.
    W. Zhang, P. Xie, C. Duan et al., Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5 :Eu. Chem. Phys. Lett. 292, 133–136 (1998)CrossRefGoogle Scholar
  31. 31.
    T. Aitasalo, P. Dereń, J. Hölsä et al., Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 177, 114–122 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Ren, L. Yang, J. Qiu et al., Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses. Solid State Commun. 140, 38–41 (2006).  https://doi.org/10.1016/j.ssc.2006.07.023 CrossRefGoogle Scholar
  33. 33.
    R. Chatterjee, S. Saha, D. Sen et al., Neutralizing the charge imbalance problem in Eu3+-activated BaAl2O4 nanophosphors: theoretical insights and experimental validation considering K+ codoping. ACS Omega 3, 788–800 (2018).  https://doi.org/10.1021/acsomega.7b01525 CrossRefGoogle Scholar
  34. 34.
    D. Chen, Y. Yu, F. Huang et al., Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 132, 9976–9978 (2010).  https://doi.org/10.1021/ja1036429 CrossRefGoogle Scholar
  35. 35.
    A. Kudo, R. Niishiro, A. Iwase, H. Kato, Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 339, 104–110 (2007).  https://doi.org/10.1016/j.chemphys.2007.07.024 CrossRefGoogle Scholar
  36. 36.
    H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy). J. Alloys Compd. 457, 61–65 (2008).  https://doi.org/10.1016/j.jallcom.2007.02.134 CrossRefGoogle Scholar
  37. 37.
    H. Lu, Y. Chen (2015) The influence of codopant aluminum ions (Al3+) on the optical characteristics of YBO3:Sm3+ phosphors. J. Nanomater. 2015, 5–10.  https://doi.org/10.1155/2015/615863 Google Scholar
  38. 38.
    K. Bulcar, T. Dogan, S. Akça et al., Thermoluminescence behavior of Sm3+ activated ZnB2O4 phosphors synthesized using low temperature chemical synthesis method. Nucl. Instrum. Methods Phys. Res. B 428, 65–71 (2018).  https://doi.org/10.1016/j.nimb.2018.05.019 CrossRefGoogle Scholar
  39. 39.
    A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 CrossRefGoogle Scholar
  40. 40.
    Y. Tang, Z. Chen, A. Borbély et al., (2015) Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater. Charact. 102:131–136.  https://doi.org/10.1016/j.matchar.2015.03.003 CrossRefGoogle Scholar
  41. 41.
    I. Fatimah, Y. Rahmadianti, R.A. Pudiasari (2018) Photocatalyst of perovskite CaTiO3 nanopowder synthesized from CaO derived from snail shell in comparison with the use of CaO and CaCO3. IOP Conf. Ser. Mater. Sci. Eng.  https://doi.org/10.1088/1757-899X/349/1/012026 Google Scholar
  42. 42.
    L.M. Lozano-Snchez, S.W. Lee, T. Sekino, V. Rodríguez-González, Practical microwave-induced hydrothermal synthesis of rectangular prism-like CaTiO3. CrystEngComm 15, 2359–2362 (2013).  https://doi.org/10.1039/c3ce27040h CrossRefGoogle Scholar
  43. 43.
    S.S. Gaikwad, A.V. Borhade, V.B. Gaikwad, A green chemistry approach for synthesis of CaTiO3 photocatalyst: Its effects on degradation of methylene blue, phytotoxicity and microbial study. Der Pharma Chem. 4, 184–193 (2012)Google Scholar
  44. 44.
    E. Desimoni, B. Brunetti, X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3, 70–117 (2015).  https://doi.org/10.3390/chemosensors3020070 CrossRefGoogle Scholar
  45. 45.
    H. Shi, L. Li, L. Zhang et al., Designed preparation of polyacrylic acid/calcium carbonate nanoparticles with high doxorubicin payload for liver cancer chemotherapy. CrystEngComm 17, 4768–4773 (2015).  https://doi.org/10.1039/C5CE00708A CrossRefGoogle Scholar
  46. 46.
    J.M.C. Lourenço, P.A. Ribeiro, A.M. Botelho do Rego et al., Counterions in poly(allylamine hydrochloride) and poly(styrene sulfonate) layer-by-layer films. Langmuir 20, 8103–8109 (2004).  https://doi.org/10.1021/la049872v CrossRefGoogle Scholar
  47. 47.
    B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 1–12 (2016).  https://doi.org/10.1038/srep32355 CrossRefGoogle Scholar
  48. 48.
    R. Yu, H. Mi Noh, B. Kee Moon et al., Photoluminescence characteristics of Sm3+ doped Ba3La(PO4)3 as new orange-red emitting phosphors. J. Lumin. 145, 717–722 (2014).  https://doi.org/10.1016/j.jlumin.2013.08.049 CrossRefGoogle Scholar
  49. 49.
    X. Shi, Y. Liu, J. Zhang et al., Effects of pH and Sm3+ doping on the structure, morphology and luminescence properties of BiPO4:Sm3+ phosphors prepared by hydrothermal method. Ceram. Int. 41, 3162–3168 (2015).  https://doi.org/10.1016/j.ceramint.2014.10.164 CrossRefGoogle Scholar
  50. 50.
    M. Kasperczyk, S. Person, D. Ananias et al., Excitation of magnetic dipole transitions at optical frequencies. Phys. Rev. Lett. 114, 1–5 (2015).  https://doi.org/10.1103/PhysRevLett.114.163903 CrossRefGoogle Scholar
  51. 51.
    Z. Wang, P. Li, X. Zhang et al., Improvement orange-red emitting by codoping A+(A = Li, Na, K) in Ca2BO3Cl:Sm3+ phosphor. Physica B 414, 56–59 (2013).  https://doi.org/10.1016/j.physb.2013.01.019 CrossRefGoogle Scholar
  52. 52.
    S. Saha, S. Das, U.K. Ghorai et al., Controlling nonradiative transition centers in Eu3+ activated CaSnO3 nanophosphors through Na+ co-doping: realization of ultrabright red emission along with higher thermal stability. J. Phys. Chem. C 119, 16824–16835 (2015).  https://doi.org/10.1021/acs.jpcc.5b03500 CrossRefGoogle Scholar
  53. 53.
    U.K. Ghorai, R. Roy, N. Mazumder et al., Observation of bright green luminescence in an Eu2+ complexed graphene oxide composite through reduction of Eu3+. N. J. Chem. 39, 4210–4213 (2015).  https://doi.org/10.1039/C4NJ02323D CrossRefGoogle Scholar
  54. 54.
    X. Gu, R. Fu, W. Jiang et al., Photoluminescence properties of an orange-red LaSr2AlO5:Sm3+ phosphor prepared by the pechini-type sol-gel process. J. Rare Earths 33, 954–960 (2015).  https://doi.org/10.1016/S1002-0721(14)60511-1 CrossRefGoogle Scholar
  55. 55.
    S. Zhang, Z. Hao, L. Zhang et al., Efficient blue-emitting phosphor SrLu2O4:Ce3+ with high thermal stability for near ultraviolet (~ 400 nm) LED-chip based white LEDs. Sci. Rep. 8, 10463 (2018).  https://doi.org/10.1038/s41598-018-28834-8 CrossRefGoogle Scholar
  56. 56.
    G. Zhu, Z. Li, F. Zhou et al., A novel temperature sensitive Sm3+ doped niobate orange-red phosphor: the synthesis and characteristic luminescent property investigation. J. Lumin. 196, 32–35 (2018).  https://doi.org/10.1016/j.jlumin.2017.12.014 CrossRefGoogle Scholar
  57. 57.
    Y.-C. Fang, S.-Y. Chu, P.-C. Kao et al., Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+,Eu3+ red phosphors. J. Electrochem. Soc. 158, J1 (2011).  https://doi.org/10.1149/1.3518782 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Angshuman Santra
    • 1
  • Karamjyoti Panigrahi
    • 2
  • Subhajit Saha
    • 2
    • 5
  • Nilesh Mazumder
    • 3
    Email author
  • Ashis Ghosh
    • 1
    • 4
  • Suvajit Bakuli
    • 1
    • 6
  • Kalyan K. Chattopadhyay
    • 2
  • Uttam Kumar Ghorai
    • 1
    Email author
  1. 1.Department of Industrial Chemistry & Applied ChemistrySwami Vivekananda Research Centre, Ramakrishna Mission VidyamandiraHowrahIndia
  2. 2.School of Materials Science & NanotechnologyJadavpur UniversityKolkataIndia
  3. 3.Department of PhysicsGovt. College of Engineering & Ceramic TechnologyKolkataIndia
  4. 4.Materials Science CentreIIT KharagpurKharagpurIndia
  5. 5.School of Materials SciencesIndian Association for the Cultivation of ScienceKolkataIndia
  6. 6.Michelin India Technology Center LLPPuneIndia

Personalised recommendations