Advertisement

Transition from positive to negative electrical resistance response under humidity conditions for PEDOT:PSS-MoS2 nanocomposite thin films

  • Dominique Mombrú
  • Mariano RomeroEmail author
  • Ricardo FaccioEmail author
  • Alvaro W. MombrúEmail author
Article

Abstract

Here, we report the preparation of PEDOT:PSS-MoS2 nanocomposite thin films and their electrical resistance response under humidity conditions revealing their promising properties as humidity sensor materials. One of the most interesting features of our samples is the transition from positive to a negative electrical resistance response to humidity conditions with increasing MoS2 additions. Our confocal Raman imaging studies revealed that the presence of MoS2 yields a local charge rearrangement in the thiophenyl rings of PEDOT:PSS, in relation to the enhancement of the electrical resistance negative response as observed by impedance spectroscopy analysis. The enhancement on the negative response with increasing MoS2 additions could be explained through the increment of hole carriers in MoS2 nanosheets under humidity conditions, thus leading to an enhancement in the electrical transport along the PEDOT:PSS chains.

Notes

Acknowledgements

The authors wish to thank the Uruguayan ANII, CSIC and PEDECIBA funding institutions. We also want to thank the technical support of Alvaro Olivera and the collaboration of Laura Fornaro at GDMEA-CURE high-resolution transmission electron microscopy laboratory.

Supplementary material

10854_2019_895_MOESM1_ESM.docx (400 kb)
Supplementary material 1 (DOCX 400 KB)

References

  1. 1.
    M. Ha, S. Lim, H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 6(24), 4043–4064 (2018)Google Scholar
  2. 2.
    B. Seo, H. Hwang, S. Kang, Y. Cha, W. Choi, Flexible-detachable dual-output sensors of fluid temperature and dynamics based on structural design of thermoelectric materials. Nano Energy 50, 733–743 (2018)Google Scholar
  3. 3.
    J.-K. Park, T.-G. Kang, B.-H. Kim, H.-J. Lee, H.H. Choi, J.-G. Yook, Real-time humidity sensor based on microwave resonator coupled with PEDOT:PSS conducting polymer film. Sci. Rep. 8(1), 439 (2018)Google Scholar
  4. 4.
    Y. Zhao, B. Yang, J. Liu, Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuator B-Chem. 271, 256–263 (2018)Google Scholar
  5. 5.
    J. He, P. Xiao, J. Shi, Y. Liang, W. Lu, Y. Chen, W. Wang, P. Théato, S.-W. Kuo, T. Chen, High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018)Google Scholar
  6. 6.
    U. Mogera, A.A. Sagade, S.J. George, G.U. Kulkarni, Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 4, 4103 (2014)Google Scholar
  7. 7.
    M. Chen, J. Frueh, D. Wang, X. Lin, H. Xie, Q. He, Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators. Sci. Rep. 7(1), 769 (2017)Google Scholar
  8. 8.
    J. Ravindra Kumar, G. Prasanta Kumar, Liquid exfoliated pristine WS 2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology 27(47), 475503 (2016)Google Scholar
  9. 9.
    J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao, P. Chen, S. Wang, D. Shi, Q. Sun, G. Zhang, Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 29(34), 1702076 (2017)Google Scholar
  10. 10.
    D. Mombrú, M. Romero, R. Faccio, J. Castiglioni, A.W. Mombrú, In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications. J. Solid State Chem. 250, 60–67 (2017)Google Scholar
  11. 11.
    S. Guo, A. Arab, S. Krylyuk, A.V. Davydov, M.E. Zaghloul, Fabrication and characterization of humidity sensors based on CVD grown MoS2 thin film, 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO), 2017, pp. 164–167.Google Scholar
  12. 12.
    K. Kalantar-zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016)Google Scholar
  13. 13.
    M. Kuş, S. Okur, Electrical characterization of PEDOT:PSS beyond humidity saturation. Sens. Actuator B-Chem. 143(1), 177–181 (2009)Google Scholar
  14. 14.
    G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Wide range highly sensitive relative humidity sensor based on series combination of MoS2 and PEDOT:PSS sensors array. Sens. Actuator B-Chem. 266, 354–363 (2018)Google Scholar
  15. 15.
    Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett 8(1), 425 (2013)Google Scholar
  16. 16.
    B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.-S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.-H. Kim, Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep 5, 8052 (2015)Google Scholar
  17. 17.
    J. Pan, Z. Wang, Q. Chen, J. Hu, J. Wang, Band structure engineering of monolayer MoS2 by surface ligand functionalization for enhanced photoelectrochemical hydrogen production activity. Nanoscale 6(22), 13565–13571 (2014)Google Scholar
  18. 18.
    W. Chunhua, Z. Chujun, T. Sichao, X. Huayan, W. Lijuan, X. Haipeng, G. Yongli, Y. Junliang, Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells. J. Phys. D: Appl. Phys. 51(2), 025110 (2018)Google Scholar
  19. 19.
    S. Muralikrishna, K. Manjunath, D. Samrat, V. Reddy, T. Ramakrishnappa, D.H. Nagaraju, Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 5(109), 89389–89396 (2015)Google Scholar
  20. 20.
    D. Mombrú, M. Romero, R. Faccio, A.W. Mombrú, Raman microscopy insights on the out-of-plane electrical transport of carbon nanotube-doped PEDOT:PSS electrodes for solar cell applications. J. Phys. Chem. B 122(9), 2694–2701 (2018)Google Scholar
  21. 21.
    C. Zhou, Z. Liu, X. Du, S.P. Ringer, Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synth. Met. 160(15), 1636–1641 (2010)Google Scholar
  22. 22.
    N. Sakmeche, S. Aeiyach, J.-J. Aaron, M. Jouini, J.C. Lacroix, P.-C. Lacaze, Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 15(7), 2566–2574 (1999)Google Scholar
  23. 23.
    D. Mombrú, M. Romero, R. Faccio, A.W. Mombrú, Polyaniline intercalated with MoS2 nanosheets: structural, electric and thermoelectric properties. J. Mater. Sci. Mater. Electron 29(20), 17445–17453 (2018)Google Scholar
  24. 24.
    J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)Google Scholar
  25. 25.
    T. Stocker, A. Kohler, R. Moos, Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? a study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. B: Polym. Phys. 50, 976–983 (2012)Google Scholar
  26. 26.
    F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J. Mater. Chem. A 4(14), 5265–5273 (2016)Google Scholar
  27. 27.
    M. Neophytou, J. Griffiths, J. Fraser, M. Kirkus, H. Chen, C.B. Nielsen, I. McCulloch, High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. J. Mater. Chem. C 5(20), 4940–4945 (2017)Google Scholar
  28. 28.
    Q. Zafar, S.M. Abdullah, M.I. Azmer, M.A. Najeeb, K.W. Qadir, K. Sulaiman, Influence of relative humidity on the electrical response of PEDOT:PSS based organic field-effect transistor. Sens. Actuator B-Chem. 255, 2652–2656 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro NanoMat, Cryssmat-Lab, DETEMA, Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations