Transition from positive to negative electrical resistance response under humidity conditions for PEDOT:PSS-MoS2 nanocomposite thin films
Abstract
Here, we report the preparation of PEDOT:PSS-MoS2 nanocomposite thin films and their electrical resistance response under humidity conditions revealing their promising properties as humidity sensor materials. One of the most interesting features of our samples is the transition from positive to a negative electrical resistance response to humidity conditions with increasing MoS2 additions. Our confocal Raman imaging studies revealed that the presence of MoS2 yields a local charge rearrangement in the thiophenyl rings of PEDOT:PSS, in relation to the enhancement of the electrical resistance negative response as observed by impedance spectroscopy analysis. The enhancement on the negative response with increasing MoS2 additions could be explained through the increment of hole carriers in MoS2 nanosheets under humidity conditions, thus leading to an enhancement in the electrical transport along the PEDOT:PSS chains.
Notes
Acknowledgements
The authors wish to thank the Uruguayan ANII, CSIC and PEDECIBA funding institutions. We also want to thank the technical support of Alvaro Olivera and the collaboration of Laura Fornaro at GDMEA-CURE high-resolution transmission electron microscopy laboratory.
Supplementary material
References
- 1.M. Ha, S. Lim, H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 6(24), 4043–4064 (2018)Google Scholar
- 2.B. Seo, H. Hwang, S. Kang, Y. Cha, W. Choi, Flexible-detachable dual-output sensors of fluid temperature and dynamics based on structural design of thermoelectric materials. Nano Energy 50, 733–743 (2018)Google Scholar
- 3.J.-K. Park, T.-G. Kang, B.-H. Kim, H.-J. Lee, H.H. Choi, J.-G. Yook, Real-time humidity sensor based on microwave resonator coupled with PEDOT:PSS conducting polymer film. Sci. Rep. 8(1), 439 (2018)Google Scholar
- 4.Y. Zhao, B. Yang, J. Liu, Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuator B-Chem. 271, 256–263 (2018)Google Scholar
- 5.J. He, P. Xiao, J. Shi, Y. Liang, W. Lu, Y. Chen, W. Wang, P. Théato, S.-W. Kuo, T. Chen, High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018)Google Scholar
- 6.U. Mogera, A.A. Sagade, S.J. George, G.U. Kulkarni, Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 4, 4103 (2014)Google Scholar
- 7.M. Chen, J. Frueh, D. Wang, X. Lin, H. Xie, Q. He, Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators. Sci. Rep. 7(1), 769 (2017)Google Scholar
- 8.J. Ravindra Kumar, G. Prasanta Kumar, Liquid exfoliated pristine WS 2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology 27(47), 475503 (2016)Google Scholar
- 9.J. Zhao, N. Li, H. Yu, Z. Wei, M. Liao, P. Chen, S. Wang, D. Shi, Q. Sun, G. Zhang, Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 29(34), 1702076 (2017)Google Scholar
- 10.D. Mombrú, M. Romero, R. Faccio, J. Castiglioni, A.W. Mombrú, In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications. J. Solid State Chem. 250, 60–67 (2017)Google Scholar
- 11.S. Guo, A. Arab, S. Krylyuk, A.V. Davydov, M.E. Zaghloul, Fabrication and characterization of humidity sensors based on CVD grown MoS2 thin film, 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO), 2017, pp. 164–167.Google Scholar
- 12.K. Kalantar-zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016)Google Scholar
- 13.M. Kuş, S. Okur, Electrical characterization of PEDOT:PSS beyond humidity saturation. Sens. Actuator B-Chem. 143(1), 177–181 (2009)Google Scholar
- 14.G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Wide range highly sensitive relative humidity sensor based on series combination of MoS2 and PEDOT:PSS sensors array. Sens. Actuator B-Chem. 266, 354–363 (2018)Google Scholar
- 15.Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett 8(1), 425 (2013)Google Scholar
- 16.B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.-S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.-H. Kim, Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep 5, 8052 (2015)Google Scholar
- 17.J. Pan, Z. Wang, Q. Chen, J. Hu, J. Wang, Band structure engineering of monolayer MoS2 by surface ligand functionalization for enhanced photoelectrochemical hydrogen production activity. Nanoscale 6(22), 13565–13571 (2014)Google Scholar
- 18.W. Chunhua, Z. Chujun, T. Sichao, X. Huayan, W. Lijuan, X. Haipeng, G. Yongli, Y. Junliang, Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells. J. Phys. D: Appl. Phys. 51(2), 025110 (2018)Google Scholar
- 19.S. Muralikrishna, K. Manjunath, D. Samrat, V. Reddy, T. Ramakrishnappa, D.H. Nagaraju, Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 5(109), 89389–89396 (2015)Google Scholar
- 20.D. Mombrú, M. Romero, R. Faccio, A.W. Mombrú, Raman microscopy insights on the out-of-plane electrical transport of carbon nanotube-doped PEDOT:PSS electrodes for solar cell applications. J. Phys. Chem. B 122(9), 2694–2701 (2018)Google Scholar
- 21.C. Zhou, Z. Liu, X. Du, S.P. Ringer, Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synth. Met. 160(15), 1636–1641 (2010)Google Scholar
- 22.N. Sakmeche, S. Aeiyach, J.-J. Aaron, M. Jouini, J.C. Lacroix, P.-C. Lacaze, Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 15(7), 2566–2574 (1999)Google Scholar
- 23.D. Mombrú, M. Romero, R. Faccio, A.W. Mombrú, Polyaniline intercalated with MoS2 nanosheets: structural, electric and thermoelectric properties. J. Mater. Sci. Mater. Electron 29(20), 17445–17453 (2018)Google Scholar
- 24.J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)Google Scholar
- 25.T. Stocker, A. Kohler, R. Moos, Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? a study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. B: Polym. Phys. 50, 976–983 (2012)Google Scholar
- 26.F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J. Mater. Chem. A 4(14), 5265–5273 (2016)Google Scholar
- 27.M. Neophytou, J. Griffiths, J. Fraser, M. Kirkus, H. Chen, C.B. Nielsen, I. McCulloch, High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. J. Mater. Chem. C 5(20), 4940–4945 (2017)Google Scholar
- 28.Q. Zafar, S.M. Abdullah, M.I. Azmer, M.A. Najeeb, K.W. Qadir, K. Sulaiman, Influence of relative humidity on the electrical response of PEDOT:PSS based organic field-effect transistor. Sens. Actuator B-Chem. 255, 2652–2656 (2018)Google Scholar