Thermoelectric performance of skutterudite NixCo4−xSb12 rapidly synthesized by microwave heating

  • Ying Lei
  • Leiqiang Ma
  • Rui Zheng
  • Yu LiEmail author
  • Rundong WanEmail author
  • Wen ChenEmail author
  • Hongwei Zhou
  • Wensheng Gao


In the present work, a series of single phase Ni-doped skutterudite compounds NixCo4−xSb12 (x = 0.1, 0.2, 0.3, 0.4, 0.5) were successful synthesized by 5 min microwave heating for the first time. The resulting ingots was pulverized and sintered by spark plasma sintering to fabricate bulk samples, and their microstructure and thermoelectric properties have been investigated systematically. The results show that the matrix grain characteristics are influenced by Ni concentration and microwave irradiation. The Ni0.3Co3.7Sb12 bulk has the smallest and uniform grain size of about 1–2 µm. The maximum power factors of NixCo4−xSb12 are 2273, 2479, 2711, 2613 and 2526 µWm−1K−2 respectively. A highest ZT of 0.52 for Ni0.3Co3.7Sb12 is achieved at 773 K along with a total thermal conductivity of 3.8 Wm−1K−1.



This work was supported by National Natural Science Foundation of China (Grant No. 51574134, No. 51574042), Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (Grant No. 18LHPY016) and Anhui university outstanding young talent support program (key project) (Grant No. gxyqZD2017039).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)CrossRefGoogle Scholar
  2. 2.
    G.A. Slack, V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994)CrossRefGoogle Scholar
  3. 3.
    T. Caillat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996)CrossRefGoogle Scholar
  4. 4.
    G.A. Slack, CRC Handbook of Thermoelectrics (CRC Press, Florida, 1995), p. 407Google Scholar
  5. 5.
    B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)CrossRefGoogle Scholar
  6. 6.
    B.C. Sales, D. Mandrus, B.C. Chakoumakos, Phys. Rev. B 56, 15081 (1997)CrossRefGoogle Scholar
  7. 7.
    J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, C. Uher, Phys. Rev. B 67, 165207 (2003)CrossRefGoogle Scholar
  8. 8.
    X.Y. Li, L.D. Chen, J.F. Fan, W.B. Zhang, T. Kawahara, T. Hirai, J. Appl. Phys. 98, 4442 (2005)Google Scholar
  9. 9.
    L.D. Dudkin, N.Kh. Abrikosov, Sov. J. Inorg. Chem. 2, 212 (1957)Google Scholar
  10. 10.
    H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, J. Appl. Phys. 86, 3780 (1999)CrossRefGoogle Scholar
  11. 11.
    J.S. Dyck, W. Chen, J. Yang, G.P. Meisner, C. Uher, Phys. Rev. B 65, 115204 (2002)CrossRefGoogle Scholar
  12. 12.
    H. Kitagawa, M. Wakatsuki, H. Nagaoka, H. Noguchi, Y. Isoda, K. Hasezaki, Y. Noda, J. Phys. Chem. Solids 66, 1635 (2005)CrossRefGoogle Scholar
  13. 13.
    K. Il-Ho, U. Soon-Chul, Met. Mater. Int. 13, 53 (2007)CrossRefGoogle Scholar
  14. 14.
    U. Soon-Chul, K. Il-Ho, J. Korean Phys. Soc. 55, 942 (2009)CrossRefGoogle Scholar
  15. 15.
    H. Qinyu, H. Qing, W. Xiaowei, Y. Jian, L. Yucheng, Y. Xiao, Y. Bo, M. Yi, P. Bed, J. Giri, W. Dezhi, C. Gang, R. Zhifeng, J. Nanosci. Nanotechnol. 8, 4003 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Gharleghi, C.J. Liu, J. Alloy. Compd. 592, 277 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Dahal, H.S. Kim, S. Gahlawat, Acta Mate 117, 13 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Tan, H. Chi, W. Liu, J. Mater. Chem. C 3, 8372 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Wang, J.R. Salvador, J. Yang, NPG Asia Mate 8, e285 (2016)CrossRefGoogle Scholar
  20. 20.
    W.Y. Lai, Q.Q. Chen, Q.Y. He, Q.L. Fan, W. Huang, Chem. Commun. 18(2006)1959Google Scholar
  21. 21.
    Y. He, H.T. Lu, L.M. Sai, W.Y. Lai, Q.L. Fan, L.H. Wang, J. Phys. Chem. B 110, 13352 (2006)CrossRefGoogle Scholar
  22. 22.
    K. Biswas, S. Muir, M.A. Subramanian, Mater. Res. Bull. 46, 2288 (2011)CrossRefGoogle Scholar
  23. 23.
    H.J. Kitchen, S.R. Vallance, J.L. Kennedy, N. Tapia-Ruiz, L. Carassiti, A. Harrison, A.G. Whittaker, T.D. Drysdale, S.W. Kingman, D.H. Gregory, Chem. Rev. 114, 1170 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Lei, W.S. Gao, Y. Li, R.D. Wan, W. Chen, R. Zheng, L.Q. Ma, H.W. Zhou, Mater. Lett. 233, 166 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Li, C. Cheng, Y. Lei, M. Wang, R.D. Wan, Dalton Trans. 46, 33 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Lei, Y. Li, L. Xu, J.Y. Yang, R.D. Wan, H.M. Long, J. Alloy. Compd. 660, 166 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Lei, C. Cheng, Y. Li, R.D. Wan, M. Wang, Ceram. Int. 43, 9343 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Lei, M. Wang, Y. Li, W.S. Gao, R.D. Wan, C. Cheng, Mater. Lett. 201, 189 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Li, R. Zheng, Y. Lei, W.S. Gao, L.Q. Ma, R.D. Wan, Chin. Pat., 201811362898.1Google Scholar
  31. 31.
    Y. Lei, L.Q. Ma, Y. Li, R.D. Wan, W.S. Gao, R. Zheng, Chin. Pat., 201810812316.9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.College of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina
  3. 3.Institute of Mineral Resources Development and UtilizationChangsha Research Institute of Mining and Metallurgy CO., LTDChangshaChina
  4. 4.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina

Personalised recommendations