Advertisement

Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries

  • Liang Ma
  • Xian-Yinan Pei
  • Dong-Chuan Mo
  • Yi Heng
  • Shu-Shen Lyu
  • Yuan-Xiang FuEmail author
Article

Abstract

A NiO flake and reduced graphene oxide sheet (NiO/RGO) composite was synthesized via an in situ ultrasonic agitation method after heat calcination in a nitrogen atmosphere. The NiO/RGO composite displayed a high reversible capacity of 825 mA h/g after 50 cycles at 100 mA/g, which was higher than the pure NiO flakes (197 mA h/g). The RGO sheets (115 mA h/g) used in lithium-ion batteries as anode materials. The NiO/RGO electrode showed excellent rate capacities that were higher than the pure NiO flakes and the RGO sheets electrodes within the same experimental conditions. These improvements could be attributed to the RGO sheets improved the electrical conductivity of NiO flakes and buffered the volume expansion of the NiO/RGO composite electrode during lithium cycling.

Notes

Acknowledgements

The authors gratefully acknowledge financial support for this research from the Fundamental Research Funds for the Central Universities (Grant No. 17lgpy68), National Natural Science Foundation of China (Grant No. 51676212) and the Guangdong Natural Science Foundation (Grant No. 2018A030313482).

Supplementary material

10854_2019_885_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2789 KB)

References

  1. 1.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001).  https://doi.org/10.1038/35104644 CrossRefGoogle Scholar
  2. 2.
    E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008).  https://doi.org/10.1021/Nl800957b CrossRefGoogle Scholar
  3. 3.
    H.K. Liu, Mater. Res. Bull. 48, 4968 (2013).  https://doi.org/10.1016/j.materresbull.2013.04.032 CrossRefGoogle Scholar
  4. 4.
    M. Armand, J.M. Tarascon, Nature 451, 652 (2008).  https://doi.org/10.1038/451652a CrossRefGoogle Scholar
  5. 5.
    J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010).  https://doi.org/10.1021/cm901452z CrossRefGoogle Scholar
  6. 6.
    Y.M. Sun, N.A. Liu, Y. Cui, Nat Energy 1, 16071 (2016).  https://doi.org/10.1038/Nenergy.2016.71 CrossRefGoogle Scholar
  7. 7.
    B.S. Lee, S.B. Son, K.M. Park et al., ACS Appl. Mater. Interfaces 4, 6701 (2012).  https://doi.org/10.1021/am301873d
  8. 8.
    A. Funabiki, M. Inaba, T. Abe, Z. Ogumi, J. Electrochem. Soc. 146, 2443 (1999).  https://doi.org/10.1149/1.1391953 CrossRefGoogle Scholar
  9. 9.
    L. Yuan, Z.P. Guo, K. Konstantinov, P. Munroe, H.K. Liu, Electrochem. Solid State Lett. 9, A524 (2006).  https://doi.org/10.1149/1.2345550
  10. 10.
    H. Guan, X. Wang, H. Li et al., Chem. Commun. (Camb) 48, 4878 (2012).  https://doi.org/10.1039/c2cc30843f CrossRefGoogle Scholar
  11. 11.
    K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, L. Chen, J. Power Sources 195, 3300 (2010).  https://doi.org/10.1016/j.jpowsour.2009.11.133 CrossRefGoogle Scholar
  12. 12.
    X.-Y. Pei, D.-C. Mo, S.-S. Lyu, J.-H. Zhang, Y.-X. Fu, Rsc Adv. 8, 28518 (2018).  https://doi.org/10.1039/C8RA03051K CrossRefGoogle Scholar
  13. 13.
    H. Wang, Q. Pan, Y. Cheng, J. Zhao, G Yin, Electrochim. Acta 54, 2851 (2009).  https://doi.org/10.1016/j.electacta.2008.11.019 CrossRefGoogle Scholar
  14. 14.
    L.P. Zhang, J.C. Mu, Z. Wang, G.M. Li, Y.L. Zhang, Y.H. He, J. Alloy. Compd. 671, 60 (2016).  https://doi.org/10.1016/j.jallcom.2016.02.038 CrossRefGoogle Scholar
  15. 15.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000).  https://doi.org/10.1038/35035045 CrossRefGoogle Scholar
  16. 16.
    M. Sasidharan, N. Gunawardhana, C. Senthil, M. Yoshio, J. Mater Chem. A 2, 7337 (2014).  https://doi.org/10.1039/c3ta14937d CrossRefGoogle Scholar
  17. 17.
    X.H. Huang, J.P. Tu, C.Q. Zhang, F. Zhou, Electrochim. Acta 55, 8981 (2010).  https://doi.org/10.1016/j.electacta.2010.08.039 CrossRefGoogle Scholar
  18. 18.
    S.A. Needham, G.X. Wang, H.K. Liu, J. Power Sources 159, 254 (2006).  https://doi.org/10.1016/j.jpowsour.2006.04.025 CrossRefGoogle Scholar
  19. 19.
    X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, H.M. Wu, Electrochim. Acta 52, 4177 (2007).  https://doi.org/10.1016/j.electacta.2006.11.034 CrossRefGoogle Scholar
  20. 20.
    Y.-G. Zhu, G.-S. Cao, J. Xie, T.-J. Zhu, X.-B. Zhao, Nanosci. Nanotech. Lett. 4, 35 (2012).  https://doi.org/10.1166/nnl.2012.1281 CrossRefGoogle Scholar
  21. 21.
    S. Mustansar Abbas, S. Tajammul Hussain, S. Ali, K. Shahzad Munawar, N. Ahmad, N. Ali, Mater Lett. 107, 158 (2013).  https://doi.org/10.1016/j.matlet.2013.05.141 CrossRefGoogle Scholar
  22. 22.
    Y. Xia, W. Zhang, Z. Xiao et al., J. Mater. Chem. 22, 9209 (2012).  https://doi.org/10.1039/c2jm16935e CrossRefGoogle Scholar
  23. 23.
    Y.F. Zhang, Y. Wang, J. Yang et al., 2D Mater (2016).  https://doi.org/10.1088/2053-1583/3/2/024001
  24. 24.
    K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004)CrossRefGoogle Scholar
  25. 25.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small (2018).  https://doi.org/10.1002/Smll.201800987
  26. 26.
    B. Wen, M.S. Cao, M.M. Lu et al., Adv. Mater. 26, 3484 (2014).  https://doi.org/10.1002/adma.201400108 CrossRefGoogle Scholar
  27. 27.
    X.-Y. Pei, D.-C. Mo, S.-S. Lyu, J.-H. Zhang, Y.-X. Fu, Appl. Surf. Sci. 465, 470 (2019).  https://doi.org/10.1016/j.apsusc.2018.09.151 CrossRefGoogle Scholar
  28. 28.
    Y. Huang, X.L. Huang, J.S. Lian, D. Xu, L.M. Wang, X.B. Zhang, J. Mater. Chem. 22, 2844 (2012).  https://doi.org/10.1039/c2jm15865e CrossRefGoogle Scholar
  29. 29.
    D.F. Qiu, G. Bu, B. Zhao et al., Mater Lett 141, 43 (2015).  https://doi.org/10.1016/j.matlet.2014.11.033 CrossRefGoogle Scholar
  30. 30.
    N.S. Spinner, A. Palmieri, N. Beauregard, L.C. Zhang, J. Campanella, W.E. Mustain, J. Power Sources 276, 46 (2015).  https://doi.org/10.1016/j.jpowsour.2014.11.089 CrossRefGoogle Scholar
  31. 31.
    J.Y. Chen, X.F. Wu, Y. Liu et al., Appl. Surf. Sci. 425, 461 (2017).  https://doi.org/10.1016/j.apsusc.2017.06.285 CrossRefGoogle Scholar
  32. 32.
    L.H. Chu, M.C. Li, Y. Wang et al., J. Nanomater. 4, 1 (2016).  https://doi.org/10.1155/2016/4901847 Google Scholar
  33. 33.
    D.F. Qiu, G. Bu, B. Zhao, Z.X. Lin, Rsc Adv. 5, 4385 (2015).  https://doi.org/10.1039/c4ra12416b CrossRefGoogle Scholar
  34. 34.
    G.P. Kim, I. Nam, S. Park, J. Park, J. Yi, Nanotechnology (2013)  https://doi.org/10.1088/0957-4484/24/47/475402 Google Scholar
  35. 35.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin et al., ACS nano 4, 4806 (2010).  https://doi.org/10.1021/nn1006368 CrossRefGoogle Scholar
  36. 36.
    W.S. Hummer, R.E. Offema, J. Am. Chem. Soc. 80, 1339 (1958).  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  37. 37.
    W. Yang, G. Cheng, C. Dong et al., J. Mater. Chem. A 2, 20022 (2014).  https://doi.org/10.1039/c4ta04809a CrossRefGoogle Scholar
  38. 38.
    Y.J. Mai, S.J. Shi, D. Zhang, Y. Lu, C.D. Gu, J.P. Tu, J Power Sources 204, 155 (2012).  https://doi.org/10.1016/j.jpowsour.2011.12.038 CrossRefGoogle Scholar
  39. 39.
    Z.Q. Wang, M. Zhang, J. Zhou, Acs Appl. Mater. Inter. 8, 11507 (2016).  https://doi.org/10.1021/acsami.6601958 CrossRefGoogle Scholar
  40. 40.
    J.H. Lin, H.N. Jia, H.Y. Liang et al., Adv. Sci. 5, 1700887 (2018)CrossRefGoogle Scholar
  41. 41.
    S.K. Park, J.H. Choi, Y.C. Kang, Chem. Eng. J. 354, 327 (2018)CrossRefGoogle Scholar
  42. 42.
    H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, J. Am. Chem. Soc. 132, 7472 (2010).  https://doi.org/10.1021/ja102267j CrossRefGoogle Scholar
  43. 43.
    Q. Wang, C.Y. Zhang, W.F. Shan, L.L. Xing, X.Y. Xue, Mater. Lett. 118, 66 (2014).  https://doi.org/10.1016/j.matlet.2013.12.011 CrossRefGoogle Scholar
  44. 44.
    J. Wu, W.J. Yin, W.W. Liu et al., J. Mater. Chem. A 4, 10940 (2016).  https://doi.org/10.1039/c6ta03137d CrossRefGoogle Scholar
  45. 45.
    C.Y. Ding, W.W. Zhou, X.Y. Wang et al., Chem. Eng. J. 332, 479 (2018).  https://doi.org/10.1016/j.cej.2017.09.019 CrossRefGoogle Scholar
  46. 46.
    X.W. Wang, L.D. Zhang, Z.H. Zhang, A.S. Yu, P.Y. Wu, Phys. Chem. Chem. Phys. 18, 3893 (2016).  https://doi.org/10.1039/c5cp06903c CrossRefGoogle Scholar
  47. 47.
    F. Zou, Y.M. Chen, K.W. Liu et al., ACS Nano 10, 377 (2016).  https://doi.org/10.1021/acsnano.5b05041 CrossRefGoogle Scholar
  48. 48.
    X.L. Sun, W.P. Si, X.H. Liu et al., Nano Energy 9, 168 (2014).  https://doi.org/10.1016/j.nanoen.2014.06.022 CrossRefGoogle Scholar
  49. 49.
    D. Xie, Q.M. Su, W.W. Yuan, Z.M. Dong, J. Zhang, G.H. Du, J. Phys. Chem. C 117, 24121 (2013).  https://doi.org/10.1021/jp4054814 CrossRefGoogle Scholar
  50. 50.
    D.F. Qiu, Z.J. Xu, M.B. Zheng et al., J. Solid State Electr. 16, 1889 (2012).  https://doi.org/10.1007/s10008-011-1466-9 CrossRefGoogle Scholar
  51. 51.
    M.M. Rahman, S.L. Chou, C. Zhong, J.Z. Wang, D. Wexler, H.K. Liu, Solid State Ionics 180, 1646 (2010).  https://doi.org/10.1016/j.ssi.2009.10.018 CrossRefGoogle Scholar
  52. 52.
    H. Guo, Y.P. Wang, W. Wang et al., Part Part Syst. Char. 31, 374 (2014).  https://doi.org/10.1002/ppsc.201300198 CrossRefGoogle Scholar
  53. 53.
    T. Li, S.B. Ni, X.H. Lv, X.L. Yang, S. Duan, J. Alloy. Compd. 553, 167 (2013).  https://doi.org/10.1016/j.jallcom.2012.11.136 CrossRefGoogle Scholar
  54. 54.
    S.M. Abbas, S.T. Hussain, S. Ali, K.S. Munawar, N. Ahmad, N. Ali, Mater. Lett. 107, 158 (2013).  https://doi.org/10.1016/j.matlet.2013.05.141 CrossRefGoogle Scholar
  55. 55.
    Y.F. Ma, L.M. Sheng, H.B. Zhao et al., Solid State Sci. 46, 49 (2015).  https://doi.org/10.1016/j.solidstatesciences.2015.05.014 CrossRefGoogle Scholar
  56. 56.
    F. Al-Hazmi, T. Al-Harbi, W.E. Mahmoud, Mater. Lett. 86, 28 (2012).  https://doi.org/10.1016/j.matlet.2012.07.036 CrossRefGoogle Scholar
  57. 57.
    S. Bykkam, V.R. Kalagadda, B. Kalagadda, K.P. Selvam, Y. Hayashi, J. Mater. Sci. Mater. 28, 6217 (2017).  https://doi.org/10.1007/s10854-016-6301-8 CrossRefGoogle Scholar
  58. 58.
    Q.Z. Yang, G.A.C. Jones, M.J. Kelly, H. Beere, I. Farrer, Semicond. Sci. Tech. (2008)  https://doi.org/10.1088/0268-1242/23/5/055018 Google Scholar
  59. 59.
    M. Daryabor, A. Ahmadi, H. Zilouei, Ultrason. Sonochem. 34, 931 (2017).  https://doi.org/10.1016/j.ultsonch.2016.07.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of MaterialsGuangzhouPeople’s Republic of China
  3. 3.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations