Enhanced energy storage properties in Nb-modified Bi0.5Na0.5TiO3–SrTiO3 lead-free electroceramics

  • Xing-Ye Tong
  • Min-Wei Song
  • Jia-Jun ZhouEmail author
  • Ke Wang
  • Chun-Lin Guan
  • Hong Liu
  • Jing-Zhong Fang


Lead-free (1 − x)Bi0.5Na0.5TiO3xSrTiO3 + ywt%Nb2O5 electroceramics were synthesized using the conventional method to investigate the influences of SrTiO3 content and Nb2O5 doping on the material’s phase structure, microstructure, and energy storage properties. All the investigated compositions possessed a single perovskite phase structure of pseudocubic symmetry. The introduction of SrTiO3 and Nb2O5 led to a weakened relaxor characteristic and a decrease of Tm. The microstructure was refined by Nb2O5 doping, and the average grain size of the 0.6Bi0.5Na0.5TiO3–0.4SrTiO3 sample decreased drastically from ~ 10 to ~ 1 µm when 2.5 wt% Nb2O5 was added. Enhanced electrical breakdown and polarization were achieved for the samples with the refined microstructure. Among the various Bi0.5Na0.5TiO3-based ceramics, 0.6Bi0.5Na0.5TiO3–0.4SrTiO3 + 2.5 wt%Nb2O5 ceramic exhibited excellent energy-storage properties with thermal stability, in which large recoverable energy-storage density Wrec ~ 1.82 J/cc and efficiency η ~ 81% were both achieved. Our results indicate that this ceramic is a promising material for lead-free energy storage applications.



This work was supported by National Nature Science Foundation of China (Grant No. 51402297) and Youth Innovation Promotion Association CAS (Grant No. 2016334).


  1. 1.
    G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)CrossRefGoogle Scholar
  2. 2.
    M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE. Electr. Insul. Mater. 26, 44–50 (2010)CrossRefGoogle Scholar
  3. 3.
    X.F. Chen, X.L. Dong, G.S. Wang, F. Cao, Y.L. Wang, Doped Pb(Zr,Sn,Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363, 56–63 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Hao, Z. Yue, J. Xu, S. An, C.W. Nan, Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. J. Appl. Phys. 110, 064109 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009–8031 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Liu, M.Y. Li, Q. Zhang, W. Li, Y. Zhang, M. Shen, S. Qiu, G. Zhang, S. Jiang, High thermal stability in PLZST anti-ferroelectric energy storage ceramics with the coexistence of tetragonal and orthorhombic phase. J. Eur. Ceram. Soc. 38, 5396–5401 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008)CrossRefGoogle Scholar
  8. 8.
    J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, Y.J. Park, Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 ceramics. Ceram. Int. 40, 8419–8425 (2014)CrossRefGoogle Scholar
  9. 9.
    S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  10. 10.
    N. Sun, Y. Li, Q. Zhang, X. Hao, Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions. J. Mater. Chem. C 6, 10693–10703 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94, 4382–4386 (2011)CrossRefGoogle Scholar
  12. 12.
    Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, H. Fan, Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 modified by CaZrO3. J. Alloys Compd. 663, 701–707 (2016)CrossRefGoogle Scholar
  13. 13.
    Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M.T. Lanagan, H. Hao, Z. Yao, H. Liu, Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37, 99–106 (2017)CrossRefGoogle Scholar
  14. 14.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications -status and perspective. J. Electroceram. 29, 71–93 (2012)CrossRefGoogle Scholar
  15. 15.
    W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Xu, Y. Liu, Z. Yu, R. Yao, J. Ye, Y. Lu, Enhanced energy storage properties of lead-free (1-x)Bi0.5Na0.5TiO3xSrTiO3 antiferroelectric ceramics by two-step sintering method. J. Mater. Sci.: Mater. Electron. 27, 12479–12484 (2016)Google Scholar
  17. 17.
    C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, Y. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319–326 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler, C. Christodoulou, Influence of nanocrystalline grain size on the breakdown Strength of ceramic dielectric. In: Proceedings of 14th IEEE International Pulsed Power Conference, 719–722 (2003)Google Scholar
  19. 19.
    L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Saleem, I. Kim, M.S. Kim, S.A. Pervez, U. Farooq, M.Z. Khan, A. Yaqoob, S.J. Jeong, Electromechanical properties of Nb doped 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 ceramic. RSC Adv. 6, 89210–89220 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Lou, Q. Yin, A. Duan, D. Cao, X. Yin, Structure, dielectric properties and impedance analysis of lead-free (1 – x)Na0.5Bi0.5TiO3-xSrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 29, 6283–6288 (2018)Google Scholar
  22. 22.
    R.A. Malik, A. Hussain, M. Acosta, J. Daniels, H.S. Han, M.H. Kim, J.S. Lee, Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics. J. Eur. Ceram. Soc. 38, 2511–2519 (2018)CrossRefGoogle Scholar
  23. 23.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rodel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol%BaTiO3. J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  24. 24.
    Q. Li, S. Gao, L. Ning, H. Fan, Z. Liu, Z. Li, Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Ceram. Int. 43, 5367–5373 (2017)CrossRefGoogle Scholar
  25. 25.
    A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)CrossRefGoogle Scholar
  26. 26.
    Q. Xu, H. Liu, Z. Song, X. Huang, A. Ullah, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution. J. Mater. Sci.: Mater. Electron. 27, 322–329 (2016)Google Scholar
  27. 27.
    A. Chauhan, S. Patel, R. Vaish, Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv. 4, 087106 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Pu, M. Yao, L. Zhang, P. Jing, High energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.9–xZr0.1SnxO3 ceramics. J. Alloys Compd. 687, 689–695 (2016)CrossRefGoogle Scholar
  29. 29.
    Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017)CrossRefGoogle Scholar
  30. 30.
    Q. Xu, T.M. Li, H. Hao, S.J. Zhang, Z.J. Wang, M.H. Cao, Z.H. Yao, H.X. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Pan, B.J. Chu, Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics. J. Eur. Ceram. Soc. 36, 81–88 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xing-Ye Tong
    • 1
    • 2
  • Min-Wei Song
    • 1
  • Jia-Jun Zhou
    • 1
    Email author
  • Ke Wang
    • 3
  • Chun-Lin Guan
    • 1
  • Hong Liu
    • 1
  • Jing-Zhong Fang
    • 1
  1. 1.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations