Poly(vinyl alcohol) gate dielectric in organic field-effect transistors

  • Ali Nawaz
  • Ivo A. HümmelgenEmail author


The use of poly(vinyl alcohol) (PVA) as the gate dielectric in organic field-effect transistors (OFETs) constitutes an effective solution for lowering the operating voltage and for the realization of next-generation flexible electronic applications. This article reviews the progress of both planar and vertical type OFETs that utilize PVA as the gate dielectric. It presents a systematic study, highlighting the major advantages, disadvantages and limitations related to the use of PVA in OFETs. Most importantly, this review discusses the physical mechanisms related to charge trapping at the dielectric/semiconductor interface of OFETs and the several mechanisms that influence the effective charge transport. In this context, the recent advances dedicated to the improvement of charge transport and performance in PVA OFETs will also be presented and discussed.



Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is acknowledged for funding.


  1. 1.
    X. Peng, G. Horowitz, D. Fichou, F. Garnier, Appl. Phys. Lett. 57, 2013 (1990)CrossRefGoogle Scholar
  2. 2.
    Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, A.J. Lovinger, Chem. Mater. 9, 1299 (1997)CrossRefGoogle Scholar
  3. 3.
    Z. Bao, V. Kuck, J.A. Rogers, M.A. Paczkowski, Adv. Funct. Mater. 12, 526 (2002)CrossRefGoogle Scholar
  4. 4.
    I.M. Rutenberg, O.A. Scherman, R.H. Grubbs, W. Jiang, E. Garfunkel, Z. Bao, J. Am. Chem. Soc. 126, 4062 (2004)CrossRefGoogle Scholar
  5. 5.
    J.S. Choi, J. Inf. Disp. 9, 35 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Yun, C. Pearson, M.C. Petty, J. Appl. Phys. 105, 34508 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Das, J. Lee, T. Lim, Y. Choi, Y.S. Park, S. Pyo, Synth. Methods. 162, 598 (2012)CrossRefGoogle Scholar
  8. 8.
    C.U. Devi, A. Sharma, V.V.R. Rao, Mater. Lett. 56, 167 (2002)CrossRefGoogle Scholar
  9. 9.
    C.J. Bettinger, Z. Bao, Adv. Mater. 22, 651 (2010)CrossRefGoogle Scholar
  10. 10.
    A.R.V. Benvenho, W.S. Machado, I. Cruz-Cruz, I.A. Hümmelgen, J. Appl. Phys. 113, 214509 (2013)CrossRefGoogle Scholar
  11. 11.
    E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.T.S. Garcia, M.M.C. Forte, H. Boudinov, Thin Solid Films 568, 111 (2014)CrossRefGoogle Scholar
  12. 12.
    S.B. Aziz, J. Electron. Mater. 45, 736 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Wang, D. Ma, S. Pan, Y. Yang, Appl. Phys. Lett. 101, 33303 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Nam, J. Seo, H. Kim, Y. Kim, Appl. Phys. Lett. 107, 1 (2015)Google Scholar
  15. 15.
    T. Oyama, R. Ye, M. Baba, K. Ohta, Mol. Cryst. Liq. Cryst. 471, 205 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Zhang, M. Funahashi, N. Tamaoki, Org. Electron. 11, 363 (2010)CrossRefGoogle Scholar
  17. 17.
    G.W. Hyung, J. Park, J.R. Koo, K.M. Choi, S.J. Kwon, E.S. Cho, Y.S. Kim, Y.K. Kim, Solid State Electron. 69, 27 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Feng, W. Tang, J. Zhao, Q. Cui, C. Jiang, X. Guo, IEEE Trans. Electron Devices 61, 1175 (2014)CrossRefGoogle Scholar
  19. 19.
    R.A. Gross, Science 297, 803 (2002)CrossRefGoogle Scholar
  20. 20.
    E. Chiellini, A. Corti, S. D’Antone, R. Solaro, Prog. Polym. Sci. 28, 963 (2003)CrossRefGoogle Scholar
  21. 21.
    G.V. Leite, M.A.H. Vogt, H.I. Boudinov, E.A. Van Etten, in 2017 32nd Symp. Microelectron. Technol. Devices (IEEE, New York, 2017), pp. 1–4CrossRefGoogle Scholar
  22. 22.
    E.A. Van Etten, G.V. Leite, M.A.H. Vogt, H. Boudinov, in 2017 32nd Symp. Microelectron. Technol. Devices (IEEE, New York, 2017), pp. 1–4CrossRefGoogle Scholar
  23. 23.
    G.V. Leite, E.A. Van Etten, M.M.C. Forte, H. Boudinov, Synth. Methods 229, 33 (2017)CrossRefGoogle Scholar
  24. 24.
    H.-I. Un, P. Cheng, T. Lei, C.-Y. Yang, J.-Y. Wang, J. Pei, Adv. Mater. 30, 1800017 (2018)CrossRefGoogle Scholar
  25. 25.
    A.J. Campbell, D.D.C. Bradley, D.G. Lidzey, J. Appl. Phys. 82, 6326 (1997)CrossRefGoogle Scholar
  26. 26.
    J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mater. 16, 4543 (2004)CrossRefGoogle Scholar
  27. 27.
    W.S. Machado, I.A. Hümmelgen, IEEE Trans. Electron Devices 59, 1529 (2012)CrossRefGoogle Scholar
  28. 28.
    X. Wang, S. Ochiai, G. Sawa, Y. Uchida, K. Kojima, A. Ohashi, T. Mizutani, Jpn. J. Appl. Phys. 46, 1337 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Grimm, K.-J. Hilke, E. Scharrer, J. Electrochem. Soc. 130, 1767 (1983)CrossRefGoogle Scholar
  30. 30.
    E.El Shafee, R.L. Nessim, Polym. Degrad. Stab. 48, 67 (1995)CrossRefGoogle Scholar
  31. 31.
    I. Cruz-Cruz, A.C.B. Tavares, M. Reyes-Reyes, R. López-Sandoval, I.A. Hümmelgen, J. Phys. D Appl. Phys. 47, 075102 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Jastrombek, A.C.B. Tavares, M.S. Meruvia, M. Koehler, I.A. Hümmelgen, Phys. Status Solidi 212, 2759 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Nawaz, I. Cruz-Cruz, R. Rodrigues, I.A. Hümmelgen, Phys. Chem. Chem. Phys. 17, 26530 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Jastrombek, A. Nawaz, M. Koehler, M.S. Meruvia, I.A. Hümmelgen, J. Phys. D Appl. Phys. 48, 335104 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Nawaz, C. de Col, I. Cruz-Cruz, A. Kumar, A. Kumar, I.A. Hümmelgen, in SPIE Opt. Photonics, Vol. 9568 (2015)Google Scholar
  36. 36.
    A. Nawaz, C. de Col, I.A. Hümmelgen, Mater. Res. 19, 1201 (2016)CrossRefGoogle Scholar
  37. 37.
    C. de Col, A. Nawaz, I. Cruz-Cruz, A. Kumar, A. Kumar, I.A. Hümmelgen, Org. Electron. 17, 22 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Nawaz, M.S. Meruvia, D.L. Tarange, S.P. Gopinathan, A. Kumar, A. Kumar, H. Bhunia, A.J. Pal, I.A. Hümmelgen, Org. Electron. 38, 89 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Nawaz, I. Cruz-Cruz, J.S. Rego, M. Koehler, S.P. Gopinathan, A. Kumar, I.A. Hümmelgen, Semicond. Sci. Technol. 32, 084003 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Egginger, M. Irimia-Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer, N.S. Sariciftci, Adv. Mater. 20, 1018 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, N.S. Sariciftci, Monatshefte Für Chemie - Chem. Mon. 140, 735 (2009)CrossRefGoogle Scholar
  42. 42.
    C.M. Hassan, N.A. Peppas, in Biopolymers—PVA Hydrogels, Anionic Polymerisation Nanocomposites SE-2 (Springer, Berlin, 2000)Google Scholar
  43. 43.
    V. Goodship, D. Jacobs, Polyvinyl Alcohol: Materials, Processing and Applications (Smithers Rapra Press, Shrewsbury, 2009)Google Scholar
  44. 44.
    V.G. Kadajji, G.V. Betageri, Polymers. 3, 1972 (2011)CrossRefGoogle Scholar
  45. 45.
    O. Olabisi, A. Kolapo, in Handbook of Thermoplastics, 2nd edn. (CRC Press, Taylor & Francis Group, Boca Raton, 2016)Google Scholar
  46. 46.
    W.O. Herrmann, W. Haehnel, Chem. Forschungsgemeinschaft DE (1924)Google Scholar
  47. 47.
    W.O. Herrmann, W. Haehnel, H. Berg, Chem. Abstr. 31, 59059 (1937)Google Scholar
  48. 48.
    Kuraray Specialities Europe KSE, GmbH, Mowiol Polyvinyl Alcohol, Information Brochure, Germany (2003)Google Scholar
  49. 49.
    A. Nilasaroya, L.A. Poole-Warren, J.M. Whitelock, P. Jo Martens, Biomaterials 29, 4658 (2008)CrossRefGoogle Scholar
  50. 50.
    Y. Li, Y. Song, J. Li, Y. Li, N. Li, S. Niu, Ultrason. Sonochem. 42, 18 (2018)CrossRefGoogle Scholar
  51. 51.
    K. Yamada, T. Nakano, Y. Okamoto, Macromolecules 31, 7598 (1998)CrossRefGoogle Scholar
  52. 52.
    Y. Nagara, T. Nakano, Y. Okamoto, Y. Gotoh, M. Nagura, Polymer 42, 9679 (2001)CrossRefGoogle Scholar
  53. 53.
    H. Ohgi, T. Sato, Macromolecules 32, 2403 (1999)CrossRefGoogle Scholar
  54. 54.
    C.-A. Lin, C.-R. Wu, H.-C. Tsai, Des. Monomers Polym. 9, 305 (2006)CrossRefGoogle Scholar
  55. 55.
    F.L. Marten, C.W. Zvanut, in Manufacture of Polyvinyl Acetate for Polyvinyl Alcohol (Chichester, West Sussex, 1992)Google Scholar
  56. 56.
    G. Tesoro, J. Polym. Sci. Part C Polym. Lett. 24, 485 (1986)CrossRefGoogle Scholar
  57. 57.
    I. Sakurada, T. Okaya, in Handbook of Fiber Chemistry, 2nd edn. (Marcel Dekker, New York, 1998)Google Scholar
  58. 58.
    H. Shohota, Continuous Polymerization of Vinylacetate for Polyvinylalcohol Production, In “Properties and Applications of Polyvinyl Alcohol” (SCI Monogr., 1968)Google Scholar
  59. 59.
    Mowiol Polyvinyl Alcohol, Information Brochure (Kuraray Specialities Europe KSE GmbH, Frankfurt, 2003)Google Scholar
  60. 60.
    F.L. Marten, Kirk-Othmer Encycl. Chem. Technol (Wiley, Hoboken, 2000)Google Scholar
  61. 61.
    S. Hayashi, in Polymeric Materials Encyclopedia (CRC Press, Boca Raton, 1996)Google Scholar
  62. 62.
    S. Matsuzawa, in Handbook of Thermoplastics, 1st edn. (Marcel Dekker, New York, 1997)Google Scholar
  63. 63.
    H.Y. Erbil, Vinyl Acetate Emulsion Polymerization and Copolymerization with Acrylic Monomers (CRC Press, Boca Raton, 2000)CrossRefGoogle Scholar
  64. 64.
    I. Sakurada, Polyvinyl Alcohol Fibers (Marcel Dekker, New York, 1985)Google Scholar
  65. 65.
    O.L. Wheeler, S.L. Ernst, R.N. Crozier, J. Polym. Sci. 8, 409 (1952)CrossRefGoogle Scholar
  66. 66.
    C. Forder, S.P. Armes, N.C. Billingham, Polym. Bull. 35, 291 (1995)CrossRefGoogle Scholar
  67. 67.
    D.J. Nagy, in Handbook of Size Exclusion Chromatography and Related Techniques (Marcel Dekker, New York, 2003)Google Scholar
  68. 68.
    K.A. Mauritz, Macromolecules 22, 4483 (1989)CrossRefGoogle Scholar
  69. 69.
    B. Martin, H. Kliem, J. Appl. Phys. 98, 74102 (2005)CrossRefGoogle Scholar
  70. 70.
    I. Palos, G. Cadenas-Pliego, S.Y. Knjazhanski, E.J. Jiménez-Regalado, E.G. De Casas, V.H. Ponce-Ibarra, Polym. Degrad. Stab. 90, 264 (2005)CrossRefGoogle Scholar
  71. 71.
    R.C.L. Mooney, J. Am. Chem. Soc. 63, 2828 (1941)CrossRefGoogle Scholar
  72. 72.
    C.W. Bunn, Nature 161, 929 (1948)CrossRefGoogle Scholar
  73. 73.
    C.W. Bunn, H.S. Peiser, Nature 159, 161 (1947)CrossRefGoogle Scholar
  74. 74.
    S.H. Kim, S.Y. Yang, K. Shin, H. Jeon, J.W. Lee, K.P. Hong, C.E. Park, Appl. Phys. Lett. 89, 183516 (2006)CrossRefGoogle Scholar
  75. 75.
    S.H. Kim, W.M. Yun, O.-K. Kwon, K. Hong, C. Yang, W.-S. Choi, C.E. Park, J. Phys. D Appl. Phys. 43, 465102 (2010)CrossRefGoogle Scholar
  76. 76.
    R. Parashkov, E. Becker, G. Ginev, T. Riedl, H.-H. Johannes, W. Kowalsky, J. Appl. Phys. 95, 1594 (2004)CrossRefGoogle Scholar
  77. 77.
    Y. Jang, D.H. Kim, Y.D. Park, J.H. Cho, M. Hwang, K. Cho, Appl. Phys. Lett. 88, 72101 (2006)CrossRefGoogle Scholar
  78. 78.
    L. Feng, W. Tang, X. Xu, Q. Cui, X. Guo, IEEE Electron Device Lett. 34, 129 (2013)CrossRefGoogle Scholar
  79. 79.
    D. Duncalf, A.S. Dunn, J. Appl. Polym. Sci. 8, 1763 (1964)CrossRefGoogle Scholar
  80. 80.
    H. Lee, Van Nice, R. Farlee, Polym. Eng. Sci. 17, 359 (1977)CrossRefGoogle Scholar
  81. 81.
    M.-H. Yoon, C. Kim, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 128, 12851 (2006)CrossRefGoogle Scholar
  82. 82.
    C. Tang, C.D. Saquing, J.R. Harding, S.A. Khan, Macromolecules 43, 630 (2010)CrossRefGoogle Scholar
  83. 83.
    C.C. Wang, W.-H. Lee, C.-T. Liu, Thin Solid Films 518, 7385 (2010)CrossRefGoogle Scholar
  84. 84.
    E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, A. Bonfiglio, Org. Electron. 12, 477 (2011)CrossRefGoogle Scholar
  85. 85.
    E. Becker, R. Parashkov, G. Ginev, D. Schneider, S. Hartmann, F. Brunetti, T. Dobbertin, D. Metzdorf, T. Riedl, H.-H. Johannes, W. Kowalsky, Appl. Phys. Lett. 83, 4044 (2003)CrossRefGoogle Scholar
  86. 86.
    U. Kläning, J. Bjerrum, M. Trætteberg, A. Grönvall, B. Zaar, E. Diczfalusy, Acta Chem. Scand. 12, 807 (1958)CrossRefGoogle Scholar
  87. 87.
    U.K. Kläning, M.C.R. Symons, J. Chem. Soc. 977 (1960)Google Scholar
  88. 88.
    F. Djouani, Y. Israëli, L. Frezet, A. Rivaton, R.A. Lessard, M. Bolte, J. Polym. Sci. Part A Polym. Chem. 44, 1317 (2006)CrossRefGoogle Scholar
  89. 89.
    G. Horowitz, Adv. Mater. 10, 365 (1998)CrossRefGoogle Scholar
  90. 90.
    G. Horowitz, X. Peng, D. Fichou, F. Garnier, J. Appl. Phys. 67, 528 (1990)CrossRefGoogle Scholar
  91. 91.
    H.H. Choi, K. Cho, C.D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater. 17, 2 (2017)CrossRefGoogle Scholar
  92. 92.
    P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices (2009)Google Scholar
  93. 93.
    T.-D. Tsai, J.-W. Chang, T.-C. Wen, T.-F. Guo, Adv. Funct. Mater. 23, 4206 (2013)CrossRefGoogle Scholar
  94. 94.
    T.B. Singh, N. Marjanović, P. Stadler, M. Auinger, G.J. Matt, S. Günes, N.S. Sariciftci, R. Schwödiauer, S. Bauer, J. Appl. Phys. 97, 83714 (2005)CrossRefGoogle Scholar
  95. 95.
    T.B. Singh, S. Erten, S. Günes, C. Zafer, G. Turkmen, B. Kuban, Y. Teoman, N.S. Sariciftci, S. Icli, Org. Electron. 7, 480 (2006)CrossRefGoogle Scholar
  96. 96.
    T.B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N.S. Sariciftci, Adv. Mater. 17, 2315 (2005)CrossRefGoogle Scholar
  97. 97.
    T.B. Singh, P. Senkarabacak, N.S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, G. Horowitz, Appl. Phys. Lett. 89, 33512 (2006)CrossRefGoogle Scholar
  98. 98.
    W.S. Machado, I.A. Hümmelgen, Phys. Status Solidi Rapid Res. Lett. 6, 74 (2012)CrossRefGoogle Scholar
  99. 99.
    W. Huang, W. Shi, S. Han, J. Yu, AIP Adv. 3, 52122 (2013)CrossRefGoogle Scholar
  100. 100.
    A. Nawaz, A. Kumar, I.A. Hümmelgen, Org. Electron. 51, 94 (2017)CrossRefGoogle Scholar
  101. 101.
    A. Nawaz, A.C.B. Tavares, T. Trang Do, B.B. Patil, P. Sonar, I.A. Hümmelgen, Flex. Print. Electron. 3, 15006 (2018)CrossRefGoogle Scholar
  102. 102.
    M. Koehler, K.F. Seidel, Phys. Rev. B Condens. Matter Mater. Phys. 81, 1 (2010)CrossRefGoogle Scholar
  103. 103.
    J. Sworakowski, U. Bielecka, P. Lutsyk, K. Janus, Thin Solid Films 571, 56 (2014)CrossRefGoogle Scholar
  104. 104.
    P.G. Le Comber, W.E. Spear, Phys. Rev. Lett. 25, 509 (1970)CrossRefGoogle Scholar
  105. 105.
    H.C. Avila, P. Serrano, A.R.J. Barreto, Z. Ahmed, C. de P. Gouvêa, C. Vilani, R.B. Capaz, C.F.N. Marchiori, M. Cremona, Org. Electron. 58, 33 (2018)CrossRefGoogle Scholar
  106. 106.
    L. Feng, W. Tang, J. Zhao, R. Yang, W. Hu, Q. Li, R. Wang, X. Guo, Sci. Rep. 6, 20671 (2016)CrossRefGoogle Scholar
  107. 107.
    N.V.V. Subbarao, M. Gedda, P.K. Iyer, D.K. Goswami, Org. Electron. 32, 169 (2016)CrossRefGoogle Scholar
  108. 108.
    D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, S. Im, Appl. Phys. Lett. 92, 13304 (2008)CrossRefGoogle Scholar
  109. 109.
    T.B. Singh, N. Marjanović, G.J. Matt, N.S. Sariciftci, R. Schwödiauer, S. Bauer, Appl. Phys. Lett. 85, 5409 (2004)CrossRefGoogle Scholar
  110. 110.
    C.A. Lee, D.W. Park, S.H. Jin, I.H. Park, J.D. Lee, B.-G. Park, Appl. Phys. Lett. 88, 252102 (2006)CrossRefGoogle Scholar
  111. 111.
    D.-W. Park, C.A. Lee, K.-D. Jung, B.-G. Park, H. Shin, J.D. Lee, Appl. Phys. Lett. 89, 263507 (2006)CrossRefGoogle Scholar
  112. 112.
    A. Kvitschal, I. Cruz-Cruz, I.A. Hümmelgen, Org. Electron. 27, 155 (2015)CrossRefGoogle Scholar
  113. 113.
    H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Appl. Mater. Interfaces 8, 10430 (2016)CrossRefGoogle Scholar
  114. 114.
    A.J. Ben-Sasson, N. Tessler, Nano Lett. 12, 4729 (2012)CrossRefGoogle Scholar
  115. 115.
    L. Ma, Y. Yang, Appl. Phys. Lett. 85, 5084 (2004)CrossRefGoogle Scholar
  116. 116.
    B. Liu, M.A. McCarthy, Y. Yoon, D.Y. Kim, Z. Wu, F. So, P.H. Holloway, J.R. Reynolds, J. Guo, A.G. Rinzler, Adv. Mater. 20, 3605 (2008)CrossRefGoogle Scholar
  117. 117.
    L. Rossi, K.F. Seidel, W.S. Machado, I.A. Hümmelgen, J. Appl. Phys. 110, 94508 (2011)CrossRefGoogle Scholar
  118. 118.
    K.F. Seidel, L. Rossi, R.M.Q. Mello, I.A. Hümmelgen, J. Mater. Sci. Mater. Electron. 24, 1052 (2013)CrossRefGoogle Scholar
  119. 119.
    A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Appl. Mater. Interfaces 7, 2149 (2015)CrossRefGoogle Scholar
  120. 120.
    A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Appl. Phys. Lett. 95, 213301 (2009)CrossRefGoogle Scholar
  121. 121.
    A.J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Appl. Phys. Lett. 100, 263306 (2012)CrossRefGoogle Scholar
  122. 122.
    S.-H. Li, Z. Xu, L. Ma, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 91, 83507 (2007)CrossRefGoogle Scholar
  123. 123.
    S.-H. Li, Z. Xu, G. Yang, L. Ma, Y. Yang, Appl. Phys. Lett. 93, 213301 (2008)CrossRefGoogle Scholar
  124. 124.
    D.E. Johnston, K.G. Yager, C.-Y. Nam, B.M. Ocko, C.T. Black, Nano Lett. 12, 4181 (2012)CrossRefGoogle Scholar
  125. 125.
    M. Greenman, A.J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Appl. Phys. Lett. 103, 73502 (2013)CrossRefGoogle Scholar
  126. 126.
    H. Kleemann, A.A. Günther, K. Leo, B. Lüssem, Small 9, 3670 (2013)CrossRefGoogle Scholar
  127. 127.
    M.A. McCarthy, B. Liu, A.G. Rinzler, Nano Lett. 10, 3467 (2010)CrossRefGoogle Scholar
  128. 128.
    B. Xu, T. Dogan, J.G.E. Wilbers, M.P. de Jong, P.A. Bobbert, W.G. van der Wiel, J. Sci. Adv. Mater. Devices 2, 501 (2017)CrossRefGoogle Scholar
  129. 129.
    Y. Liu, H. Zhou, N.O. Weiss, Y. Huang, X. Duan, ACS Nano 9, 11102 (2015)CrossRefGoogle Scholar
  130. 130.
    L.G.S. Albano, M.H. Boratto, O. Nunes-Neto, C.F.O. Graeff, Org. Electron. 50, 311 (2017)CrossRefGoogle Scholar
  131. 131.
    M.Z. Mohd Halizan, N.A. Roslan, S.M. Abdullah, N. Abdul Halim, T.S. Velayutham, K.L. Woon, A. Supangat, J. Mater. Sci. Mater. Electron. 28, 11961 (2017)CrossRefGoogle Scholar
  132. 132.
    N.A. Roslan, S.M. Abdullah, M.Z.M. Halizan, T.M. Bawazeer, N. Alsenany, M.S. Alsoufi, W.H.A. Majid, A. Supangat, J. Electron. Mater. 47, 2184 (2018)CrossRefGoogle Scholar
  133. 133.
    W. Hu, Z. Zheng, J. Jiang, Org. Electron. 44, 1 (2017)CrossRefGoogle Scholar
  134. 134.
    C. Feng, M. Yi, S. Yu, I.A. Hümmelgen, T. Zhang, D. Ma, J. Nanosci. Nanotechnol. 8, 2037 (2008)CrossRefGoogle Scholar
  135. 135.
    D.R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1995)Google Scholar
  136. 136.
    S.X. Chen, K. Seki, H. Inokuchi, Z. Shi, R. Qian, Bull. Chem. Soc. Jpn 56, 2565 (1983)CrossRefGoogle Scholar
  137. 137.
    I.G. Hill, A. Kahn, J. Appl. Phys. 84, 5583 (1998)CrossRefGoogle Scholar
  138. 138.
    L. Zhu, H. Tang, Y. Harima, Y. Kunugi, K. Yamashita, J. Ohshita, A. Kunai, Thin Solid Films 396, 214 (2001)CrossRefGoogle Scholar
  139. 139.
    J. Ficker, A. Ullmann, W. Fix, H. Rost, W. Clemens, J. Appl. Phys. 94, 2638 (2003)CrossRefGoogle Scholar
  140. 140.
    H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 457, 679 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Laboratório Nacional de Nanotecnologia (LNNano)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil

Personalised recommendations