Structure, morphology and magnetodielectric investigations of BaTi1−xFexO3−δ ceramics

  • P. Esther Rubavathi
  • L. Venkidu
  • M. Veera Gajendra Babu
  • R. Venkat Raman
  • B. Bagyalakshmi
  • S. M. Abdul Kader
  • K. Baskar
  • M. Muneeswaran
  • N. V. Giridharan
  • B. SundarakannanEmail author


Ferromagnetism is successfully imposed on a robust ferroelectric material by Fe-substitution and magnetodielectric investigation of the ceramics leads us to propose a sensor for magnetic field measurement. Tetragonal to hexagonal structural phase transformation is unambiguously identified from Rietveld refinement of the structure. Coexistence of tetragonal and hexagonal phase is also identified from Raman spectra and SAED. Structural details of the two phases and phase percentage are correlated to the physical properties obtained from P–E loop, M–H loop and magnetodielectric measurements. Ferroelectric loops are diminished due to pinning of domain wall motion by oxygen vacancies and an increase of the non-ferroelectric hexagonal phase percentage. The decrease of remnant magnetization is ascribed to the occupancy of Fe in pentahedral–octahedral sites and oxygen vacancies. Magnetodielectric dispersion below 104 Hz is predominantly due to extrinsic origin through the combined effect of space charge polarization and magnetoresistance. The intrinsic magnetodielectric effect above 104 Hz is attributed to strain mediated magnetoelectric coupling.



Ms. P.E would like to acknowledge financial support from the University Grants Commission, New Delhi through BSR fellowship (F.No.:25-1/2014-15(BSR)/7-305/2010/(BSR)). DST-FIST powder XRD facility of Department of Physics is also acknowledged.


  1. 1.
    Y. Shirahata, T. Nozaki, G. Venkataiah, H. Taniguchi, M. Itoh, T. Taniyama, Switching of the symmetry of magnetic anisotropy in Fe/BaTiO3 heterostructures. Appl. Phys. Lett. 99, 022501 (2011)Google Scholar
  2. 2.
    Y. Rongzheng Liu, R. Zhao, Y. Huang, Zhao, H. Zhou, Multiferroic ferrite/perovskite oxide core/shell nanostructures. J. Mater. Chem. 20, 10665–10670 (2010)Google Scholar
  3. 3.
    J. Shah, R.K. Kotnala, Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy. Appl. Phys. Lett. 104, 142901 (2014)Google Scholar
  4. 4.
    N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, L.V. Hong, Structural phase separation and optical and magnetic properties of BaTi1–xMnxO3 multiferroics. J. Appl. Phys. 111, 113913 (2012)Google Scholar
  5. 5.
    N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.-L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi1–xFexO3 ceramics. J. Appl. Phys. 110, 043914 (2011)Google Scholar
  6. 6.
    N. Maikhuri, A.K. Panwar, A.K. Jha, Investigation of A- and B-site Fe substituted BaTiO3 ceramics. J. Appl. Phys. 113, 17D915 (2013)Google Scholar
  7. 7.
    K.C. Verma, V. Gupta, J. Kaur, R.K. Kotnala, Raman spectra, photoluminescence, magnetism and magnetoelectric coupling in pure and Fe doped BaTiO3 nanostructures. J. Alloys Compd. 578, 5–11 (2013)Google Scholar
  8. 8.
    Y. Li, Q. Liu, T. Yao, Z. Pan, Z. Sun, Y. Jiang, H. Zhang, Z. Pan, W. Yan, S. Wei, Hexagonal BaTi1–xCoxO3 phase stabilized by Co dopants. Appl. Phys. Lett. 96, 091905 (2010)Google Scholar
  9. 9.
    S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014)Google Scholar
  10. 10.
    H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh, P.H. Dederichs, Theoretical prediction of magnetic properties of Ba(Ti1 – xMx)O3 (M = Sc,V,Cr,Mn,Fe,Co,Ni,Cu). Jpn. J. Appl. Phys. 40, 1355–1358 (2001)Google Scholar
  11. 11.
    X.K. Wei, T. Zou, F. Wang, Q.H. Zhang, Y. Sun, L. Gu, A. Hirata, M.W. Chen, Y. Yao, C.Q. Jin, R.C. Yu, Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature. J. Appl. Phys. 111, 073904 (2012)Google Scholar
  12. 12.
    X.K. Wei, L.D. Yao, X. Shen, Y. Yang, S.J. You, F.Y. Li, C.Q. Jin, R.C. Yu, Structural modulation and magnetic properties of hexagonal Ba(Ti1–xFex)O3–δ ceramics. Phys. B 405, 4851–4854 (2010)Google Scholar
  13. 13.
    Q. Shen-yu, L. Wang, L. Yu, L. Gui-hua, W. Yi-qiang, Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3 ceramics. Chen Nan Trans. Nonferrous Met. Soc. China 20, 1911–1915 (2010)Google Scholar
  14. 14.
    D. Fangting Lin, X. Jiang, W. Ma, Shi, Influence of doping concentration on room-temperature ferromagnetism for Fe-doped BaTiO3 ceramics. J. Magn. Magn. Mater. 320, 691–694 (2008)Google Scholar
  15. 15.
    G. Yukikini Akishige, T. Oomi, Yamamoto, E. Sawaguchi, Dielectric properties of ferroelectric hexagonal BaTiO3. J. Phys. Soc. Jpn. 58, 930 (1989)Google Scholar
  16. 16.
    W. Fangting Lin, Shi, Effects of doping site and pre-sintering time on microstructure and magnetic properties of Fe-doped BaTiO3 ceramics. Physica B 407, 451–456 (2012)Google Scholar
  17. 17.
    B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Phys. Rev. B 79, 134107 (2009)Google Scholar
  18. 18.
    S. Ray, P. Mahadevan, S. Mandal, S.R. Krishnakumar, C.S. Kuroda, T. Sasaki, T. Taniyama, M. Itoh, High temperature ferromagnetism in single crystalline dilute Fe-doped BaTiO3. Phys. Rev. B 77, 104416 (2008)Google Scholar
  19. 19.
    T. Chakraborty, S. Ray, M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys. Rev. B 83, 144407 (2011)Google Scholar
  20. 20.
    J. Alka Rani, S.S. Kolte, Vadla, P. Gopalan, Structural, electrical, magnetic and magnetodielectric properties of Fe doped BaTiO3 ceramics. Ceram. Int. 42, 8010–8016 (2016)Google Scholar
  21. 21.
    R.E. Daniel McCauley, Newnham, C.A. Randall, Intrinsic size effects in a barium titanate glass-ceramic. J. Am. Ceram. Soc., 81(4), 979–987 (1998)Google Scholar
  22. 22.
    V. Petricek, M. Dusek, L. Palatinus. (2006) JANA2006. Praha: Institute of PhysicsGoogle Scholar
  23. 23.
    H. Wondrantschex, U. Muller, Symmetry relations between space groups. Int Tables Crystallogr A, 244–245, 382–383 and 600–601 (2006)Google Scholar
  24. 24.
    C.J. Xiao, Z.H. Chi, W.W. Zhang, F.Y. Li, S.M. Feng, C.Q. Jin, X.H. Wang, X.Y. Deng, L.T. Li, The phase transitions and ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering. J. Phys. Chem. Solids 68, 311–314 (2007)Google Scholar
  25. 25.
    B. Bagyalakshmi, M. Veera Gajendra Babu, B. Sundarakannan, S. Kalavathi, V. Sridharan, G. Amarendra, Converse magnetoelectric effect in NiFe2O4/BaTiO3 heterostructure by electric field induced inter-ferroelectric phase transition. Mater. Lett. 170, 48–52 (2016)Google Scholar
  26. 26.
    C.D. Sinclair, M.S. Janet, F.M. Skakle, J.D. Morrison, R.I. Smith, T.P. Beales, Structure and electrical properties of oxygen-deficient hexagonal BaTiO3. J. Mater. Chem. 9, 1327–1331 (1999)Google Scholar
  27. 27.
    V.E.S.T.A.K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)Google Scholar
  28. 28.
    U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006)Google Scholar
  29. 29.
    S. Rajan, P.M. Mohammed Gazzali, G. Chandrasekaran, Impact of Fe on structural modification and room temperature magnetic ordering in BaTiO3. Spectrochim. Acta A 171, 80–89 (2017)Google Scholar
  30. 30.
    H. Hirotaka Yamaguchi, T. Uwe, Sakudo, E. Sawaguchi, Raman-scattering study of the soft phonon modes in hexagonal barium titanate. J. Phys. Soc. Japan 56, 589–595 (1987)Google Scholar
  31. 31.
    P. Dimple, M. Dutta, N. Roy, Maiti, K.T.Lyagi Avesh, Phase evolution in sonochemically synthesized Fe3+ doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterization. Phys. Chem. Chem. Phys. 18, 9758 (2016)Google Scholar
  32. 32.
    E.V. Ramana, F.O. Benilde, B.F. Costa, F. Figueiras, M.P.F. Graça, D.M. Mahajan, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3. J. Mater. Chem. C 4, 1066 (2016)Google Scholar
  33. 33.
    S.K. Das, P.P. Rout, S.K. Pradhan, B.K. Roul, Structural and magnetic properties of Ba0.98Zn0.02Ti1–xMnxO3 ceramics. J. Electroceram. 30, 266–271 (2013)Google Scholar
  34. 34.
    N.V. Dang, N.T. Dung, P.T. Phong, Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B 457, 103–107 (2015)Google Scholar
  35. 35.
    M.H. Frey, Z. Xu, P. Han, D.A. Payne, The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics. Ferroelectrics, 206207, 337–357 (1998)Google Scholar
  36. 36.
    T.K. Nath, N. Sudhakar, Magnetization study of g-Fe80–xNixCr20. Phys. Rev. B, 55(18), 12389 (1997)Google Scholar
  37. 37.
    X.K. Wei, Y.T. Su, Y. Sui, Q.H. Zhang, Y. YaO, C.Q. Jin, R.C. Yu, Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. J. Appl. Phys. 110, 114112 (2011)Google Scholar
  38. 38.
    S. Jayanthi, T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci.: Mater. Electron. 19, 615 (2008)Google Scholar
  39. 39.
    N.V. Dang, H.M. Nguyen, P.Y. Chuang, J.H. Zhang, T.D. Thanh, C.W. Hu, T.Y. Chen, H.D. Yang, V.D. Lam, C.H. Lee, L.V. Hong, Structure and magnetism of BaTi1–x FexO3–δ multiferroics. J. Appl. Phys. 111(7), 07D915 (2012)Google Scholar
  40. 40.
    M. Rawat, K.L. Yadav, Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3–BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188–199 (2014)Google Scholar
  41. 41.
    T. Phatungthane, P. Jaita, R. Sanjoom, T. Tunkasiri, G. Rujijanagul, Dielectric properties of Sr1–xBaxFe0.5Nb0.5O3 (x = 0.0, 0.1 ans 0.2) ceramics prepared by the molten salt technique and their electrode effects. Surf. Coat. Technol. 306, 229–235 (2016)Google Scholar
  42. 42.
    H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)Google Scholar
  43. 43.
    Nidhi Adhlakha, K.L.Yadav, R., Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4–0.7BiFeO3 ceramics. Smart Mater. Struct. 23(10), 105024 (2014)Google Scholar
  44. 44.
    M. Rawat, K.L. Yadav, Electrical, magnetic and magnetodielectric properties in ferrite-ferroelectric particulate composites. Smart Mater. Struct. 24(4), 045041 (2015)Google Scholar
  45. 45.
    P.K. Patel, K.L. Yadav, H. Singh, A.K. Yadav, Origin of giant dielectric constant and magnetodielectric study in Ba(Fe0.5Nb0.5)O3 nanoceramics. J. Alloys Compd. 591, 224–229 (2014)Google Scholar
  46. 46.
    P.K. Patel, K.L. Yadav, Giant dielectric permittivity and room temperature magnetodielectric study of BaTi0.2(Fe0.5Nb0.5)0.8O3 nanoceramic. Mater. Res. Bull. 48, 1435–1438 (2013)Google Scholar
  47. 47.
    S.Y. Tan, S.R. Shannigrahi, S.H. Tan, F.E.H. Tay, Synthesis and characterization of composite MgFe 2O 4–BaTiO3 multiferroic system. J. Appl. Phys. 103, 094105 (2008)Google Scholar
  48. 48.
    A. Kumar, S. Kumar, M. Prajapat, C. Prakash, Magnetodielectric properties of Cr3+ ions doped BaTiO3 multiferroic ceramic. AIP Conference Proceedings, 1665, 140008 (2015)Google Scholar
  49. 49.
    R.E. Newnham, Properties of Materials, (Oxford University Press, Oxford, 2005)Google Scholar
  50. 50.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B, 67, 180401(R) (2003)Google Scholar
  51. 51.
    H.M. Jang, J.H. Park, S. Ryu, S.R. Shannigrahi, Magnetoelectric coupling susceptibility from magnetodielectric effect. Appl. Phys. Lett. 93, 252904 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Esther Rubavathi
    • 1
  • L. Venkidu
    • 1
  • M. Veera Gajendra Babu
    • 1
  • R. Venkat Raman
    • 1
  • B. Bagyalakshmi
    • 1
  • S. M. Abdul Kader
    • 2
  • K. Baskar
    • 1
    • 3
  • M. Muneeswaran
    • 4
  • N. V. Giridharan
    • 5
  • B. Sundarakannan
    • 1
    Email author
  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Department of PhysicsSadakathullah Appa CollegeTirunelveliIndia
  3. 3.Crystal Growth CentreAnna UniversityChennaiIndia
  4. 4.Department of PhysicsPukyong National UniversityBusanSouth Korea
  5. 5.Advanced Functional Materials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations