Advertisement

Determination of optimum Er-doping level to get high transparent and low resistive Cd1 − xErxS thin films

  • S. YılmazEmail author
  • İ. Polat
  • M. Tomakin
  • E. Bacaksız
Article
  • 3 Downloads

Abstract

Cd1 − xErxS (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10) thin films were produced by a chemical route on glass slides. The structural, morphological, optical and electrical properties of the grown samples were studied to obtain the optimum Er-doping level. Structural properties indicated that specimens had a hexagonal structure. Morphological analysis showed that the grain size of pristine CdS thin films remarkably reduced with rising Er-doping. The presence of Er atoms in CdS host structure was proved by energy dispersive of X-ray spectroscopy (EDS). The transparency of CdS thin films substantially improved after 10 at.% Er-doping and a gradual decrease was acquired in the band gaps of the CdS samples with the increase of Er-doping. Photoluminescence data approved the existence of two main peaks corresponding to the green and yellow regions. Electrical properties of pristine CdS thin films were enhanced by Er-doping and the best electrical conclusions were obtained for Cd0.94Er0.06S thin films. Thus, it can be brought to an end that Er-doping enhanced both optical and electrical properties of pristine CdS thin films, which are of vital importance in optoelectronic applications.

Notes

Acknowledgements

All the authors wish to thank Adana Science and Technology University for its financial support to this work by a project Number of 17103029.

References

  1. 1.
    P. Rastogi, F. Palazon, M. Prato, F.D. Stasio, R. Krahne, ACS Appl. Mater. Interfaces 10, 5665 (2018)CrossRefGoogle Scholar
  2. 2.
    W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, Microelectron. Eng. 157, 64 (2016)CrossRefGoogle Scholar
  3. 3.
    P.P. Hankare, P.A. Chate, D.J. Sathe, Solid State Sci. 11, 1226 (2009)CrossRefGoogle Scholar
  4. 4.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovoltaics Res. Appl. 16, 235 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.H. Sun, Y.J. Ge, W.W. Li, D.J. Huang, F. Chen, L.Y. Shang, P.X. Yang, J.H. Chu, J. Phys. 276, 012187 (2011)Google Scholar
  6. 6.
    X.L. Tong, D.S. Jiang, W.B. Hu, Z.M. Liu, M.Z. Luo, Appl. Phys. A 84, 143 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Khallaf, I.O. Oladeji, G. Chai, C. Lee, Thin Solid Films 516, 7306 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Yılmaz, I. Polat, M. Tomakin, S.B. Töreli, T. Küçükömeroğlu, E. Bacaksız, J. Mater. Sci. 29, 14774 (2018)Google Scholar
  9. 9.
    A. Balakrishna, T.K. Pathak, E. Coetsee-Hugo, V. Kumar, R.E. Kroon, O.M. Ntwaeaborwa, H.C. Swart, Colloids Surf. A 540, 123 (2018)CrossRefGoogle Scholar
  10. 10.
    K. Sun, W.J. Xu, B. Zhang, L.P. You, G.Z. Ran, G.G. Qin, Nanotechnology 19, 105708 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Kohls, T. Schmidt, H. Katschorek, L. Spanhel, G. Müller, N. Mais, A. Wolf, A. Forchel, Adv. Mater. 11, 288 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Ahmadi, S. Javadpour, A. Khosravi, A. Gharavi, Jpn. J. Appl. Phys. 47, 5089 (2008)CrossRefGoogle Scholar
  13. 13.
    M.H. Choi, T.Y. Ma, Matter. Lett. 62, 1835 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Akazawa, H. Shinojima, Mater. Sci. Eng. B 189, 38 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Agarwal, B.N. Naik, S. Tripathi, Nanotechnology 28, 465707 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Akazawa, H. Shinojima, J. Appl. Phys. 117, 155303 (2015)CrossRefGoogle Scholar
  17. 17.
    J.A. Dávila-Pintle, R. Lozada-Morales, M.R. Palomino-Merino, J.A. Rivera-Márquez, O. Portillo-Moreno, O. Zelaya-Angel, J. Appl. Phys. 101, 013712 (2007)CrossRefGoogle Scholar
  18. 18.
    O. Zelaya-Angel, S.A. Tomas, P. Rodriguez, J.G. Mendoza-Alvarez, R. Lozada-Morales, O. Portillo-Moreno, J. Gonzalez-Hernandez, J. Mater. Sci. 47, 479 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Dedong, L. Ying-Kai, D.-P. Yu, Nanoscale Res. Lett. 10, 285 (2015)CrossRefGoogle Scholar
  20. 20.
    E. Bacaksız, S. Aksu, S. Yılmaz, M. Parlak, M. Altunbaş, Thin Solid Films 518, 4076 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Yılmaz, Y. Atasoy, M. Tomakin, E. Bacaksız, Superlattices Microstruct. 88, 299 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Asikuzun, O. Ozturk, L. Arda, A.T. Tasci, F. Kartal, C. Terzioglu, Ceram. Int. 42, 8085 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Bouhouche, F. Bensouici, M. Toubane, A. Azizi, A. Otmani, K. Chebout, F. Kezzoula, R. Tala-Ighil, M. Bououdin, Mater. Res. Exp. 5, 056407 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Zhang, H. Zhang, L. Li, K. Tuokedaerhan, Z. Jia, J. Alloys Compd. 744, 364 (2018)CrossRefGoogle Scholar
  25. 25.
    G.S. Thool, M. Arunakumari, A.K. Singh, S.P. Singh, Bull. Mater. Sci. 38, 1519 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Uzar, J. Mater. Sci. 29, 10471 (2018)Google Scholar
  27. 27.
    A. Khataee, S. Saadi, M. Safarpour, S.W. Joo, Ultrason. Sonochem. 27, 379 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Bhatia, N. Verma, R.K. Bedi, Opt. Mater. 62, 392 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Mao, W. Li, F. Wu, Y. Dou, L. Fang, H. Ruan, C. Kong, J. Mater. Sci. 26, 8732 (2015)Google Scholar
  30. 30.
    N. Narayanan, N.K. Deepak, J. Mater. Sci. 29, 8774 (2018)Google Scholar
  31. 31.
    C.A. Ortiz, A.L. Giraldo-Betancur, M.A. Hernandez-Landaverde, M. Ramirez-Cardona, A. Mendoza-Galvan, S. Jimenez-Sandoval, J. Vac. Sci. Technol. A 35, 031505 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Miao, S. Tanemura, L. Zhao, X. Xiao, X.T. Zhang, Thin Solid Films 543, 125 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, J. Lumin. 147, 184 (2014)CrossRefGoogle Scholar
  34. 34.
    M.A. Osman, W.A. El-Said, A.A. Othman, A.G. Abd-Elrahim, J. Phys. D 49, 165302 (2016)CrossRefGoogle Scholar
  35. 35.
    N.H. Patel, M.P. Deshpande, S.H. Chaki, J. Mater. Sci. 29, 11394 (2018)Google Scholar
  36. 36.
    K. Deka, M.P.C. Kalita, J. Alloys Compd. 757, 209 (2018)CrossRefGoogle Scholar
  37. 37.
    S. Yılmaz, Appl. Surf. Sci. 357, 873 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, J. Alloys Compd. 656, 510 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Yılmaz
    • 1
    Email author
  • İ. Polat
    • 2
  • M. Tomakin
    • 3
  • E. Bacaksız
    • 4
  1. 1.Department of Materials Engineering, Faculty of EngineeringAdana Science and Technology UniversityAdanaTurkey
  2. 2.Department of Energy Systems Engineering, Faculty of TechnologyKaradeniz Technical UniversityTrabzonTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesRecep Tayyip Erdogan UniversityRizeTurkey
  4. 4.Department of Physics, Faculty of SciencesKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations