Advertisement

Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber

  • Lujun Yu
  • Laiming Yu
  • Yubing Dong
  • Yaofeng ZhuEmail author
  • Yaqin Fu
  • Qingqing Ni
Article

Abstract

Three-dimensional aerogel has been expected to be a promising candidate for lightweight absorber. Here, polypyrrole (PPy) aerogels with elasticity characteristic have been obtained via facile oxidative polymerization and freeze-drying techniques. The low density (54 − 61 mg/cm3) and mechanical strength (15.4 − 18.7 kPa at 50% strain) of the PPy aerogels can be achieved by adjusting the FeCl3/Py molar ratios from 1:1.5 to 1.5:1. And as a microwave absorber for the PPy aerogel (FeCl3/Py = 1:1.5, 10 wt% mixed with paraffin), at the thickness of 2 mm, the minimum reflection loss (RL) could reach − 55 dB at 14 GHz and the efficient bandwidth (RL ≤ − 10 dB, 90% absorption) is 5.5 GHz. Increasing the FeCl3/Py molar ratio to 1:1, the efficient bandwidth of the prepared PPy aerogel expands to 5.6 GHz. The high-performance microwave absorption properties and well mechanical capacities of the PPy aerogels highlight their potential application in the microwave absorbing systems.

Notes

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY19E030009); National Natural Science Foundation of China (No. 51503183); Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China (No. 2016YFE0125900); Program for Innovative Research Team of Zhejiang Sci-Tech University (No. 15010039-Y); Excellent Postgraduate Dissertation Cultivation Fund of Zhejiang Sci-Tech University (No. 14090031731802).

References

  1. 1.
    C.R.P. Patel, P. Tripathi, S. Singh, A.P. Singh, S.K. Dhawan, R.K. Kotnala, B.K. Gupta, O.N. Srivastava, J. Mater. Chem. C. 4, 5483–5490 (2016)Google Scholar
  2. 2.
    O. Akman, H. Kavas, A. Baykal, M.S. Toprak, A. Çoruh, B. Aktaş, J. Magn. Magn. Mater. 327, 151–158 (2013)Google Scholar
  3. 3.
    Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y.S. Chen, Carbon 105, 438–447 (2016)Google Scholar
  4. 4.
    W.W. Liu, H. Li, Q.P. Zeng, H.N. Duan, Y.P. Guo, X.F. Liu, C.Y. Sun, H.Z. Liu, J. Mater. Chem. A. 3, 3739–3747 (2015)Google Scholar
  5. 5.
    X. Jian, B. Wu, Y.F. Wei, S.X. Dou, X.L. Wang, W.D. He, N. Mahmood, ACS Appl. Mater. Inter. 8, 6101–6109 (2016)Google Scholar
  6. 6.
    X.L. Wang, X.P. Liao, W.H. Zhang, B. Shi, Phys. Chem. Chem. Phys. 17, 2113–2120 (2015)Google Scholar
  7. 7.
    H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, ACS Appl. Mater. Inter. 7, 9776–9783 (2015)Google Scholar
  8. 8.
    L.H. Tian, X.D. Yan, J.L. Xu, P. Wallenmeyer, J. Murowchick, L. Liu, X.B. Chen, J. Mater. Chem. A. 3, 12550–12556 (2015)Google Scholar
  9. 9.
    M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)Google Scholar
  10. 10.
    Y.J. Li, L. Ma, M.Y. Gan, J.H. Tang, H.F. Hu, C.Q. Ge, L. Yu, H. Huang, F.F. Yang, Mater. Lett. 140, 192–195 (2015)Google Scholar
  11. 11.
    D. Li, H.Y. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Inter. 9, 44704–44714 (2017)Google Scholar
  12. 12.
    C.H. Wang, Y.J. Ding, Y. Yuan, X.D. He, S.T. Wu, S. Hu, M.C. Zou, W.Q. Zhao, L.S. Yang, A.Y. Cao, Y.B. Li, J. Mater. Chem. C. 3, 11893–11901 (2015)Google Scholar
  13. 13.
    X.L. Jia, J. Wang, X. Zhu, T.H. Wang, F. Yang, W.J. Dong, G. Wang, H.T. Yang, F. Wei, J. Alloy. Compd. 697, 138–146 (2017)Google Scholar
  14. 14.
    Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049–2053 (2015)Google Scholar
  15. 15.
    Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Chem. Eng. J. 337, 522–531 (2018)Google Scholar
  16. 16.
    C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng, Carbon 116, 50–58 (2017)Google Scholar
  17. 17.
    C.G. Hu, Z.Y. Mou, G.W. Lu, N. Chen, Z.L. Dong, M.J. Hu, L.T. Qu, Phys. Chem. Chem. Phys. 15, 13038–13043 (2013)Google Scholar
  18. 18.
    Y. Lu, W.N. He, T. Cao, H.T. Guo, Y.Y. Zhang, Q.W. Li, Z.Q. Shao, Y.L. Cui, X.T. Zhang, Sci. Rep. 4, 5792 (2014)Google Scholar
  19. 19.
    H.T. Guo, W.N. He, Y. Lu, X.T. Zhang, Carbon 92, 133–141 (2015)Google Scholar
  20. 20.
    X.T. Zhang, D.W. Chang, J.R. Liu, Y.J. Luo, J. Mater. Chem. 20, 5080 (2010)Google Scholar
  21. 21.
    Y.Z. Xu, Z.Y. Sui, B. Xu, H. Duan, X.T. Zhang, J. Mater. Chem. 22, 8579 (2012)Google Scholar
  22. 22.
    L.J. Yu, Q.X. Yang, J.L. Liao, Y.F. Zhu, X. Li, W.T. Yang, Y.Q. Fu, Chem. Eng. J. 352, 490 (2018)Google Scholar
  23. 23.
    L.M. Shan, X.N. Chen, X. Tian, J.J. Chen, Z.W. Zhou, M. Jiang, X.L. Xu, D. Hui, Compos. Part B 73, 181–187 (2015)Google Scholar
  24. 24.
    A. Xie, F. Wu, M.X. Sun, X.Q. Dai, Z.H. Xu, Y.Y. Qiu, Y. Wang, M.Y. Wang, Appl. Phys. Lett. 106, 222902 (2015)Google Scholar
  25. 25.
    M. Omastová, M. Trchová, J. Kovářová, J. Stejskal, Synth. Met. 138, 447 (2003)Google Scholar
  26. 26.
    M. Omastová, M. Trchová, J. Pionteck, J. Prokeš, J. Stejskal, Synth. Met. 143, 153 (2004)Google Scholar
  27. 27.
    S. Machida, S. Miyata, Synth. Met. 31, 311 (1989)Google Scholar
  28. 28.
    H. Zhuo, Y.J. Hu, X. Tong, Z.H. Chen, L.X. Zhong, H.H. Lai, L.X. Liu, S.S. Jing, Q.Z. Liu, C.F. Liu, X.W. Peng, R.C. Sun, Adv. Mater. 30, 1706705 (2018)Google Scholar
  29. 29.
    L.W. Yan, C.Q. Hong, B.Q. Sun, G.D. Zhao, Y.H. Cheng, S. Dong, D.Y. Zhang, X.H. Zhang, ACS Appl. Mater. Inter. 9, 6320–6331 (2017)Google Scholar
  30. 30.
    H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu, C.L. Zhu, Y.J. Chen, X.Y. Xue, C.W. Sun, M.S. Cao, J. Mater. Chem. 22, 21679 (2012)Google Scholar
  31. 31.
    T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, J. Mater. Chem. C 4, 1727–1735 (2016)Google Scholar
  32. 32.
    X.Y. Hong, Q. Wang, Z.H. Tang, W.Q. Khan, D.W. Zhou, T.F. Feng, J. Phys. Chem. C 120, 148–156 (2015)Google Scholar
  33. 33.
    P.A. Miles, W.B. Westphal, A.V. Hippel, Rev. Mod. Phys. 29, 279 (1957)Google Scholar
  34. 34.
    J.Y. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X.G. Yue, Z.H. Jiang, Nanoscale 8, 8899–8909 (2016)Google Scholar
  35. 35.
    T. Wu, Y. Liu, X. Zeng, T.T. Cui, Y.T. Zhao, Y.N. Li, G.X. Tong, ACS Appl. Mater. Inter. 8, 7370–7380 (2016)Google Scholar
  36. 36.
    J. Li, L. Qi, H.H. Li, J. Phys. Chem. C 120, 22865–22872 (2016)Google Scholar
  37. 37.
    F. Xia, J.W. Liu, D. Gu, P.F. Zhao, J. Zhang, R.C. Che, Nanoscale 3, 3860–3867 (2011)Google Scholar
  38. 38.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, K.H. Su, Q.Y. Zhang, Ind. Eng. Chem. Res. 55, 6263–6275 (2016)Google Scholar
  39. 39.
    C.P. Li, S.N. Ji, X.H. Jiang, G.I.N. Waterhouse, Z.M. Zhang, L.M. Yu, J. Mater. Sci. 53, 9635–9649 (2018)Google Scholar
  40. 40.
    Z.T. Li, M.Q. Ye, A.J. Han, H. Du, J. Mater. Sci. 27, 1031–1043 (2015)Google Scholar
  41. 41.
    H.C. Wang, Z.R. Yan, J. An, J. He, Y.L. Hou, H.Y. Yu, N. Ma, G.H. Yu, D.B. Sun, RSC Adv. 6, 92152–92158 (2016)Google Scholar
  42. 42.
    L.W. Jiang, Z.H. Wang, D.Y. Geng, Y. Wang, J. An, J. He, D. Li, W. Liu, Z.D. Zhang, J. Phys. Chem. C 120, 28320–28329 (2016)Google Scholar
  43. 43.
    J. Liu, Z.Z. Wang, S.u. Rehman, H. Bi, RSC Adv. 7, 53104–53110 (2017)Google Scholar
  44. 44.
    Y.M. Li, D.D. Chen, X.Y. Liu, Y.C. Zhou, Q.X. Zhuang, R.L. Cai, K. Zhang, Compos. Sci. Technol. 100, 212–219 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lujun Yu
    • 1
  • Laiming Yu
    • 1
  • Yubing Dong
    • 1
  • Yaofeng Zhu
    • 1
    Email author
  • Yaqin Fu
    • 1
  • Qingqing Ni
    • 2
  1. 1.Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyMinistry of Education, Zhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Functional Machinery and MechanicsShinshu UniversityTokidaJapan

Personalised recommendations