Advertisement

Performance and stability of co-evaporated vapor deposited perovskite solar cells

  • Ranjith KottokkaranEmail author
  • Harshavardhan A. Gaonkar
  • Hisham A. Abbas
  • Max Noack
  • Vikram Dalal
Article
  • 17 Downloads

Abstract

In this work, we report on the influence of fabrication conditions and on the performance and stability of co-evaporated vapor deposited methyl ammonium lead iodide (MAPbI3) perovskite solar cells. It is shown that as the substrate temperature increases, one has to increase the flux of MAI as indicated by higher vapour pressure in the reactor to maintain the appropriate stoichiometry of the devices. The pressure of MAI was maintained at 5.5–6 × 10−5 Torr and PbI2 rate of deposition was maintained at 0.75 A/s for a room temperature substrate deposition. For higher substrate temperature depositions at 50 °C and 75 °C we had to elevate the MAI pressure because of re-evaporation of MAI from the substrate at higher temperatures. A power conversion efficiency of > 17.4% has been achieved with a p-i-n device architecture of FTO/PTAA (polytriaryl amine)/MAPbI3/PCBM (phenyl-C61-butyric acid methyl ester)/Al through careful control of the MAI pressure and PbI2 evaporation rate. Higher substrate temperature devices showed improved grain sizes. The devices do not show any hysteresis. Devices deposited at higher substrate temperatures are significantly more photo stable over 100 h of continuous light exposure in nitrogen ambient.

Notes

Acknowledgements

This work was supported by a grant from NSF.

References

  1. 1.
    M.A. Green, A. Ho-Baillie, ACS Energy Lett. 2, 822–830 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Yang, W. Fu, Z. Zhang, H. Chen, C.Z. Li, J. Mater. Chem. A 5, 11462–11482 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Salhi, Y.S. Wudil, M.K. Hossain, A. Al-Ahmed, F.A. Al-Sulaiman, Renew. Sustain. Energy Rev. 90, 210–222 (2018)CrossRefGoogle Scholar
  4. 4.
    X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, G.G. Qin, Opt. Mat. Exp. 5, 29–43 (2015)CrossRefGoogle Scholar
  5. 5.
    N.G. Park, Mater. Today 18, 65–72 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, V. Dalal, Appl. Phys. Lett. 105, 153502 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Joshi, L. Zhang, R. Kottokkaran, H. Abbas, I. Hossain, S. Nehra, M. Dhaka, M. Noack, V. Dalal, Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 0242–0248 (2016)Google Scholar
  8. 8.
    S. Zhang, M. Stolterfoht, A. Armin, Q. Lin, F. Zu, J. Sobus, H. Jin, N. Koch, P. Meredith, P.L. Burn, D. Neher, ACS Appl. Mater. Interfaces 10, 21681–21687 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Zhao, L. Tao, H. Li, W. Huang, P. Sun, J. Liu, S. Liu, Q. Sun, Z. Cui, L. Sun, Y. Shen, Y. Yang, M. Wang, Nano Lett. 18, 2442–2449 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Avila, C. Momblona, P. Boix, M. Sessolo, H.J. Bolink, Joule 1, 431–442 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Ávila, C. Momblona, P. Boix, M. Sessolo, M. Anaya, G. Lozano, K. Vandewal, H. Míguez, H.J. Bolink, Energy Environ. Sci. 11, 3292–3297 (2018)CrossRefGoogle Scholar
  12. 12.
    R. Kottokkaran, H.A. Gaonkar, B. Bagheri, V.L. Dalal, J. Vac. Sci. Technol. A 36, 041201 (2018)CrossRefGoogle Scholar
  13. 13.
    H.A. Abbas, R. Kottokkaran, B. Ganapathy, M. Samiee, L. Zhang, A. Kitahara, M. Noack, V.L. Dalal, APL Mater. 3, 016105 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Longo, C. Momblona, M.G. La-Placa, L.G. Escrig, M. Sessolo, H.J. Bolink, ACS Energy Lett. 3, 214–219 (2018)CrossRefGoogle Scholar
  15. 15.
    Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 136, 2, 622–625 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Momblona, L.G. Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer, J.B. Nimoth, H.J. Bolink, Energy Environ. Sci. 9, 3456–3463 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Wang, L.K. Ono, M.R. Leyden, Y. Kato, S.R. Raga, M.V. Lee, Y. Qi, J. Mater. Chem. A 3, 14631–14641 (2015)CrossRefGoogle Scholar
  19. 19.
    W. Ke, D. Zhao, C.R. Grice, A.J. Cimaroli, G. Fang, Y. Yan, J. Mater. Chem. A 3, 23888–23894 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Guo, C. McCleese, C. Kolodziej, A.C.S. Samia, Y. Zhao, C. Burda, Dalton Trans. 45, 3806–3813 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Chem. Mater. 27, 4612–4619 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Balaji, P.H. Joshi, H.A. Abbas, L. Zhang, R. Kottokkaran, M. Samiee, M. Noack, V.L. Dalal, Phys. Chem. Chem. Phys. 17, 10369–10372 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Jenny (2002) The Physics of solar cells (Imperial College Press, London, p 233)Google Scholar
  24. 24.
    B. Chen, M. Yang, S. Priya, K. Zhu, J. Phys. Chem. Lett. 7, 905–917 (2016)CrossRefGoogle Scholar
  25. 25.
    N.K. Elumalai, A. Uddin, Sol Energy Mater. Solar Cells 157, 476–509 (2016)CrossRefGoogle Scholar
  26. 26.
    V.L. Dalal, M. Leonard, J.F. Booker, A. Vaseashta, IEEE 18th Photovoltaic Specialists Conference, 847 (1985)Google Scholar
  27. 27.
    P.H. Joshi, L. Zhang, I.M. Hossain, H.A. Abbas, R. Kottokkaran, S.P. Nehra, M. Dhaka, M. Noack, V.L. Dalal, AIP Adv. 6, 115114 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Chen, H. Zhou, T.B. Song, S. Luo, Z. Hong, H.S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 14, 4158–4163 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ranjith Kottokkaran
    • 1
    Email author
  • Harshavardhan A. Gaonkar
    • 1
  • Hisham A. Abbas
    • 1
  • Max Noack
    • 1
  • Vikram Dalal
    • 1
  1. 1.Microelectronics Research CentreIowa State University of Science and TechnologyAmesUSA

Personalised recommendations