Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability

  • Xinpei Ma
  • Jinjie Wang
  • Xianli Wang
  • Ling Zhao
  • Chengjun XuEmail author


Hybrid metal-ion capacitors are designed to promote the energy density of supercapacitors with less sacrifice of power density. Zinc-ion hybrid supercapacitor, based on the multivalent ion storage principle, is a kind of energy storage device in which both the high energy density and power density can be achieved. Here, we propose a new configuration of zinc-ion hybrid supercapacitors composed of mild aqueous ZnSO4 electrolyte, activated carbon (AC) anode and V2O5 cathode. The operating voltage of the hybrid supercapacitor can reach to 2 V in the aqueous electrolyte when the mass ratio of AC to V2O5 is 1:1. The maximum energy density of zinc-ion hybrid capacitor is about 3.9 times higher than that of AC symmetric supercapacitor, while its maximum power density is 1.7 times higher than that of zinc-ion battery. The capacity retention of the hybrid supercapacitors is 97.3% over 6000 charge–discharge cycles at 0.5 A g−1. Compared with MnO2 zinc-ion hybrid supercapacitors system, the stable nature of V2O5 allows new zinc-ion hybrid supercapacitors system to achieve a better cycling performance. The unique electrochemical performance, low cost and high safety of the new zinc-ion hybrid supercapacitor endow it with a very wide range of applications in consumer electronics and stationary energy storage.



The authors appreciate the financial supports from Shenzhen Technical Plan Project (No. JCYJ20160301154114273), National Key Basic Research (973) Program of China (No. 2014CB932400), International Science & Technology Cooperation Program of China (No. 2016YFE0102200), and Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111).

Supplementary material

10854_2019_841_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2765 KB)


  1. 1.
    R.F. Service, Science 313, 902–902 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, L. Dong, C. Xu, J. Hao, F. Kang, J. Li, J. Mater. Sci. 52, 5788–5798 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, ACS Appl. Mater. Interfaces 10, 10851–10859 (2018)CrossRefGoogle Scholar
  6. 6.
    V. Khomenko, E. Raymundo-Pinero, F. Béguin, J. Power Sources 153, 183–190 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang, E. Zhou, F. Kang, Q.H. Yang, Adv. Mater. 28, 9313–9319 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Dong, G. Liang, C. Xu, W. Liu, Z.-Z. Pan, E. Zhou, F. Kang, Q.-H. Yang, Nano Energy 34, 242–248 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Kang, G. Ceder, Nature 458, 190–193 (2009)CrossRefGoogle Scholar
  10. 10.
    N. Omar, M. Daowd, O. Hegazy, M. Al Sakka, T. Coosemans, P. Van den Bossche, J. Van Mierlo, Electrochim. Acta 86, 305–315 (2012)CrossRefGoogle Scholar
  11. 11.
    S.R. Sivakkumar, A.G. Pandolfo, Electrochim. Acta 65, 280–287 (2012)CrossRefGoogle Scholar
  12. 12.
    W.J. Cao, J.P. Zheng, J. Power Sources 213, 180–185 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 8, 941–955 (2015)CrossRefGoogle Scholar
  14. 14.
    M.-S. Park, Y.-G. Lim, J.-H. Kim, Y.-J. Kim, J. Cho, J.-S. Kim, Adv. Energy Mater. 1, 1002–1006 (2011)CrossRefGoogle Scholar
  15. 15.
    S.R. Sivakkumar, A.S. Milev, A.G. Pandolfo, Electrochim. Acta 56, 9700–9706 (2011)CrossRefGoogle Scholar
  16. 16.
    G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148, A930 (2001)CrossRefGoogle Scholar
  17. 17.
    A.D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, J. Power Sources 113, 62–71 (2003)CrossRefGoogle Scholar
  18. 18.
    X. Yu, C. Zhan, R. Lv, Y. Bai, Y. Lin, Z.-H. Huang, W. Shen, X. Qiu, F. Kang, Nano Energy 15, 43–53 (2015)CrossRefGoogle Scholar
  19. 19.
    R.V. Salvatierra, D. Zakhidov, J. Sha, N.D. Kim, S.K. Lee, A.O. Raji, N. Zhao, J.M. Tour, ACS Nano 11, 2724–2733 (2017)CrossRefGoogle Scholar
  20. 20.
    Z.-S. Wu, W. Ren, L. Xu, F. Li, H.-M. Cheng, ACS Nano 5, 5463–5471 (2011)CrossRefGoogle Scholar
  21. 21.
    B. Ji, F. Zhang, N. Wu, Y. Tang, Adv. Energy Mater. 7, 1700913 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Wang, Y. Tang, Adv. Energy Mater. 8, 1703320 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Du Pasquier, A. Laforgue, P. Simon, J. Power Sources 125, 95–102 (2004)CrossRefGoogle Scholar
  24. 24.
    Q. Wang, Z.H. Wen, J.H. Li, Adv. Funct. Mater. 16, 2141–2146 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang, H. Lv, C. Shen, A. Shellikeri, Y. Zheng, R. Gong, J.P. Zheng, C. Zhang, Adv. Mater. 30, 1705670 (2018)CrossRefGoogle Scholar
  26. 26.
    E. Lim, C. Jo, J. Lee, Nanoscale 8, 7827–7833 (2016)CrossRefGoogle Scholar
  27. 27.
    S.K. Kong, B.K. Kim, W.Y. Yoon, J. Electrochem. Soc. 159, A1551–A1553 (2012)CrossRefGoogle Scholar
  28. 28.
    F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, Energy Environ. Sci. 6, 1623–1632 (2013)CrossRefGoogle Scholar
  29. 29.
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómezromero, Chem. Soc. Rev. 44, 1777 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Yi, S. Chen, J. Song, M.L. Gordin, A. Manivannan, D. Wang, Adv. Funct. Mater. 24, 7433–7439 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 226, 272–288 (2013)CrossRefGoogle Scholar
  32. 32.
    H. Wang, M. Wang, Y. Tang, Energy Storage Mater. 13, 1–7 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.H. Yang, F. Kang, Energy Storage Mater. 13, 96–102 (2018)CrossRefGoogle Scholar
  34. 34.
    X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou, L. Zhao, J. Wang, D. Ren, J. Wu, C. Xu, F. Kang, Energy Storage Mater. (2018). Google Scholar
  35. 35.
    X. Guo, G. Fang, Z. Guozhao, W. Zhang, Z. Wenyu, S. Jiang, W. Lutong, W. Liangbing, C. Wang, L. Chao, T. Tianquan, Y. Tang, S. Liang, Adv. Energy Mater. 8, 1614–6832 (2018)Google Scholar
  36. 36.
    F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, Chen, Nat. Commun. 9, 1656 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, J. Am. Chem. Soc. 139, 9775–9778 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1, 16119 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, ACS Appl. Mater. Interfaces 9, 42717–42722 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funct. Mater. 28, 1802564 (2018)CrossRefGoogle Scholar
  41. 41.
    G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Nano Energy 25, 211–217 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. Engl. 51, 933–935 (2012)CrossRefGoogle Scholar
  43. 43.
    W. Liu, J. Hao, C. Xu, J. Mou, L. Dong, F. Jiang, Z. Kang, J. Wu, B. Jiang, F. Kang, Chem. Commun. (Cambridge UK) 53, 6872–6874 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Hemmati, H. Saboori, Renew. Sustain. Energy Rev. 65, 11–23 (2016)CrossRefGoogle Scholar
  45. 45.
    V. Aravindan, W. Chuiling, S. Madhavi, J. Mater. Chem. 22, 16026–16031 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Sivakkumar, A. Pandolfo, Electrochim. Acta 65, 280–287 (2012)CrossRefGoogle Scholar
  47. 47.
    M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 30, 1703725 (2017)CrossRefGoogle Scholar
  48. 48.
    L. Dong, G. Liang, C. Xu, D. Ren, J. Wang, Z.-Z. Pan, B. Li, F. Kang, Q.-H. Yang, J. Mater. Chem. A 5, 19934–19942 (2017)CrossRefGoogle Scholar
  49. 49.
    D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Nano Energy 11, 568–578 (2015)CrossRefGoogle Scholar
  50. 50.
    J. Foroughi, G.M. Spinks, D. Antiohos, A. Mirabedini, S. Gambhir, G.G. Wallace, S.R. Ghorbani, G. Peleckis, M.E. Kozlov, M.D. Lima, Adv. Funct. Mater. 24, 5859–5865 (2014)CrossRefGoogle Scholar
  51. 51.
    Y.-J. Kim, B.-J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Carbon 44, 1592–1595 (2006)CrossRefGoogle Scholar
  52. 52.
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 1, 16039 (2016)CrossRefGoogle Scholar
  53. 53.
    X. Xiao, D. Ahn, Z. Liu, J.-H. Kim, P. Lu, Electrochem. Commun. 32, 31–34 (2013)CrossRefGoogle Scholar
  54. 54.
    D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143, 2204–2211 (1996)CrossRefGoogle Scholar
  55. 55.
    Z. Ning, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 138, 12894 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xinpei Ma
    • 1
    • 2
  • Jinjie Wang
    • 1
  • Xianli Wang
    • 1
  • Ling Zhao
    • 1
  • Chengjun Xu
    • 1
    Email author
  1. 1.Shenzhen Geim Graphene Center, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations