Advertisement

ZnO nanobristles prepared by one-step thermal decomposition of zinc nitrate as ultra-high response ethanol sensor at room temperature

  • P. Tiwary
  • R. Mahapatra
  • A. K. ChakrabortyEmail author
Article

Abstract

Room temperature detection of volatile organic compounds (VOC) such as ethanol, methanol, acetone, etc has received significant research attention in recent years. In particular, detection of ethanol at ppm level using low-cost technology is highly desirable as prolonged exposure to ethanol vapor above a threshold has been linked with digestive track cancer to those working on ethanol synthesis. Here we report a simple one step method (thermal decomposition of zinc nitrate) to synthesize ZnO multifaceted nanobristles that show excellent sensitivity to ethanol at room temperature. Electron microscopic analysis revealed formation of uniformly distributed flower-budlike structures (size 2–3 m) each encompassing hundreds of multifaceted nanobristles having diameter and lengths ~ 100 nm and ~ 0.5 micron, respectively. X-ray diffraction of these nanostructures revealed crystalline wurtzite phase of ZnO. Thin films of these nanostructures deposited on glass substrates showed excellent sensitivity to ethanol vapour at room temperature exhibiting a response in excess of 500 (higher than all previous reports) at 150 ppm ethanol exposure. The sensor also showed excellent repeatability and good selectivity to ethanol as compared to several other VOCs tested suggesting its use in practical low-cost ethanol sensor.

Notes

Acknowledgements

The authors gratefully acknowledge MHRD, Govt. of India for the generous funding through the Centre of Excellence (CoE) grant under TEQIP-II, April 2013. P.T. acknowledges University Grant Commission for providing fellowship (UGC-JRF) and thanks Mr. Sandip Ruidas of the CoE, NIT Durgapur for various technical assistances.

References

  1. 1.
    C.Y.H. Chao, Build. Environ. 36, 999–1007 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Kampa, E. Castanas, Environ. Pollut. 151, 362–367 (2008)CrossRefGoogle Scholar
  3. 3.
    D.A. Sarigiannis, S.P. Karakitsios, A. Gotti, I.L. Liakos, A. Katsoyiannis, Environ. Int. 37(4), 743–765 (2011)CrossRefGoogle Scholar
  4. 4.
    S.M. Taylor, D. Sider, C. Hampson, S.J. Taylor, K. Wilson, S.D. Walter, J.D. Eyles, Ecosyst. Health 3, 27–43 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Sawangsri, P. Das, S.N. Supardan, I.Z. Mitrovic, S. Hall, R. Mahapatra, A.K. Chakraborty, Microelectron. Eng. 178, 178–181 (2017)CrossRefGoogle Scholar
  6. 6.
    R.K. Agrawalla, R. Paul, A.K. Chakraborty, A.K. Mitra, Int. J. Smart Nano Mater. 5, 180 (2014)CrossRefGoogle Scholar
  7. 7.
    S.M.D Watson, K.S. Coleman, A.K. Chakraborty, ACS Nano 2, 643 (2008)CrossRefGoogle Scholar
  8. 8.
    I. Chakraborty, A. Senapati, N. Chakrabarty, A.K. Chakraborty, J. Phys. Chem. C 122, 27180–27190 (2018)CrossRefGoogle Scholar
  9. 9.
    K. Das, A.K. Chakraborty, M.L. NandaGoswami, R.K. Singha, A. Dhar, K.S. Coleman, S.K. Ray, J. Appl. Phys. 101, 074307 (2007)CrossRefGoogle Scholar
  10. 10.
    N. Chakrabarty, S. Sivaprakash, A.K. Chakraborty, AIP Conf. Proc. 1665, 050072 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 255, 1884 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Zakrzewska, M. Radecka, Nanoscale Res. Lett. 12, 89 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S. Leonardi, G. Neri, Nanomaterials 5, 737 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Zakrzewska, Thin Solid Film 391, 229 (2001)CrossRefGoogle Scholar
  16. 16.
    X. Wang, R. Cao, S. Zhang, P. Hou, R. Han, M. Shao, X. Xu, J. Mater. Chem. A 5, 23999 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Xiangfeng, L. Xingqin, M. Guangyao, Sens. Actuators B 65, 64 (2000)CrossRefGoogle Scholar
  18. 18.
    P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, J. Mater. Sci. Mater.: Electron. 29, 15946–15956 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Sens. Actuators B 221, 1170 (2015)CrossRefGoogle Scholar
  20. 20.
    S.G. Chatterjee, S. Dey, D. Samanta, S. Santra, S. Chatterjee, P.K. Guha, A.K. Chakraborty, J. Mater. Sci.: Mater. Electron. 29, 20162–20171 (2018)Google Scholar
  21. 21.
    F.L. Meng, Z. Guo, X.J. Huang, TrAC Trends Anal. Chem. 68, 37 (2015)CrossRefGoogle Scholar
  22. 22.
    M.L. Yola, C. Göde, N. Atar, J. Mol. Liq. 246, 350–353 (2017)CrossRefGoogle Scholar
  23. 23.
    F. Kardaş, M. Beytur, O. Akyıldırım, H. Yüksek, M.L. Yola, N. Atar, J. Mol. Liq. 248, 360–363 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Salmanpour, A. Sadrnia, F. Karimic, N. Majani, M.L. Yola, V.K. Gupta, J. Mol. Liq. 254, 255–259 (2018)CrossRefGoogle Scholar
  25. 25.
    P.P. Sahay, J. Mater. Sci. 40, 4383 (2005)CrossRefGoogle Scholar
  26. 26.
    N. Saito, K. Watanabe, H. Haneda, I. Sakaguchi, K. Shimanoe, J. Phys. Chem. C 122, 7353–7360 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Tang, M. Yan, X. Ma, H. Zhang, M. Wang, D. Yang, Sens. Actuators B 113, 324–328 (2006)CrossRefGoogle Scholar
  28. 28.
    P.M. Shirage, A.K. Rana, Y. Kumar, S. Sen, S.G. Leonardi, G. Neri, RSC Adv. 6, 82733 (2016)CrossRefGoogle Scholar
  29. 29.
    O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Sens. Actuators B 144, 56 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, Sens. Actuators B 162, 237 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Huang, Y. Wu, C. Gu, M. Zhai, K. Yu, M. Yang, J. Liu, Sens. Actuators B 146, 206 (2010)CrossRefGoogle Scholar
  32. 32.
    Z. Jing, J. Zhan, Adv. Mater. 20, 4547 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Gholami, A.A. Khodadadi, A. Anaraki, Firooz, Y. Mortazavi, Sens. Actuators B 212, 395–403 (2015)CrossRefGoogle Scholar
  34. 34.
    J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Sens. Actuators B 245, 551 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wu, Cryst. Growth Des. 9, 3532–3537 (2009)CrossRefGoogle Scholar
  36. 36.
    J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)CrossRefGoogle Scholar
  37. 37.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)CrossRefGoogle Scholar
  38. 38.
    M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Appl. Phys. Lett. 93, 8 (2008)Google Scholar
  39. 39.
    A. Klini, S. Pissadakis, R.N. Das, E.P. Giannelis, S.H. Anastasiadis, D. Anglos, J. Phys. Chem. C 119, 623–631 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Shankar, J.B.B. Rayappan, Sens. Lett. 11, 1956 (2013)CrossRefGoogle Scholar
  41. 41.
    X. Zhou, Q. Xue, H. Chen, C. Liu, Physica E 42, 2021 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Kondo, Y. Sato, M. Kinoshita, P. Shankar, N.N. Mintcheva, M. Honda, S. Iwamori, S.A. Kulinich, Jpn. J. Appl. Phys. 56, 080304 (2017)CrossRefGoogle Scholar
  43. 43.
    I. Muniyandi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Ceram. Int. 40, 7993 (2014)CrossRefGoogle Scholar
  44. 44.
    P. Shankar, J.B.B. Rayappan, J. Mater. Chem. C 5, 10869 (2017)CrossRefGoogle Scholar
  45. 45.
    D. Zhang, Y. Sun, Y. Zhang, J. Mater. Sci.: Mater. Electron. 26, 7445 (2015)Google Scholar
  46. 46.
    M.R. Yu, G. Suyambrakasam, R.J. Wu, M. Chavali, Mater. Res. Bull. 47, 1713 (2012)CrossRefGoogle Scholar
  47. 47.
    S.-P. Chang, K.-Y. Chen, ISRN Nanotechnol. 2012, 453517 (2012)Google Scholar
  48. 48.
    P. Shankar, J.B.B. Rayappan, ACS Appl. Mater. Interfaces 9, 38135 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Yu, C.X. Shan, Q. Qiao, X.H. Xie, S.P. Wang, Z.Z. Zhang, D.Z. Shen, Sensors 12, 1280 (2012)CrossRefGoogle Scholar
  50. 50.
    K.K. Korir, a Catellani, G. Cicero, J. Phys. Chem. C 118, 24533 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Advanced MaterialsNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Electronic & Communications EngineeringNational Institute of TechnologyDurgapurIndia
  3. 3.Carbon Nanotechnology Lab, Department of PhysicsNational Institute of TechnologyDurgapurIndia

Personalised recommendations