Advertisement

Preparation of graphene-carbonyl iron powder@tri-iron tetroxide composite and its better microwave absorption properties

  • Yongfei Bai
  • Weihai Ma
  • Yanan Liu
  • Yi Liu
  • Jiewen Xue
  • Kai Xu
  • Yaqing LiuEmail author
  • Guizhe ZhaoEmail author
Article

Abstract

Carbonyl iron powder (CIP) is a magnetic material with high saturation magnetization and good thermal stability. However, CIP itself has high conductivity, which makes it difficult to match the impedance of free space when designing the microwave absorbing materials, coupled with a single loss mechanism, which inevitably limits its performance. In this paper, through the scheme of complementary properties of CIP and tri-iron tetroxide, the conductivity of CIP is reduced, the saturation magnetization of the composite material is ensured, and the impedance matching of microwave absorption is improved. Moreover, when graphene is introduced into the material system, the absorbing properties of the composite are greatly improved. A method of combining wet chemical oxidation with a bridging method to prepare reduced graphene oxide-carbonyl iron powder @ tri-iron tetroxide (RGO-CIP@Fe3O4) absorbent, which has better microwave absorption performance regarding reflectance loss and absorption bandwidth, is reported. The minimum reflection loss is − 53.3 dB at 10.9 GHz, and the maximum effective microwave absorption bandwidth (RL < − 10 dB) at 2.5 mm thickness is 6.4 GHz (11.6–18 GHz). Due to its thin thickness, light weight, strong absorption, and wide bandwidth, the composite is considered to have great potential as a new type of high-efficiency microwave absorbent.

Notes

Acknowledgements

The authors acknowledge the financial support from the Shanxi Province 1331 Project Key Innovation Team of Polymeric Functional New Materials and the Shanxi Province Innovative Disciplinary Group of New Materials Industry.

References

  1. 1.
    H. Wu, L.D. Wang, H.L. Wu, Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix. Appl. Surf. Sci. 290, 388–397 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Zhao, G. Shao, B.B. Fan, C.Y. Wang, Y.J. Xie, R. Zhang, Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4(OH)4 Nanoshells. Powder Technol. 270, 20–26 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, Z.M. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloy. Compd. 619, 854–860 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Xu, J.H. Luo, W. Yao, J.G. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloy. Compd. 636, 310–316 (2015)CrossRefGoogle Scholar
  5. 5.
    Y.N. Yang, L. Xia, T. Zhang, B. Shi, L.G. Huang, B. Zhong, X.Y. Zhang, H.T. Wang, J. Zhang, G.W. Wen, Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510–518 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)CrossRefGoogle Scholar
  7. 7.
    P.B. Liu, J.Yan,X.G. Gao, Y. Huang, Y.Q. Zhang, Construction of layer-by-layer sandwiched graphene/polyaniline nanorods carbon nanotubes heterostructures for high performance supercapacitors. Electrochim. Acta 272, 77–87 (2018)CrossRefGoogle Scholar
  8. 8.
    F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)CrossRefGoogle Scholar
  9. 9.
    L.H. He, Y. Zhao, L.Y. Xing, P.G. Liu, Z.Y. Wang, Y.W. Zhang, Y. Wang, Y.C. Du, Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8, 2971–2977 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Ding, Z. Zhang, B.H. Luo, Q.L. Liao, S. Liu, Y.C. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-Nano sheets/reduced-graphene-oxide composite. Nano Res. 10(3), 980–990 (2018)CrossRefGoogle Scholar
  11. 11.
    R.W. Shu, G.Y. Zhang, J.B. Zhang, X. Wang, M. Wang, Y. Gan, J.J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloy. Compd. 736, 1–11 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Shen, B.Y. Ren, S.Z. Wu, W. Wang, X.F. Zhou, Facile synthesis of RGO/SmFe5O12/CoFe2O4 ternary nanocomposites: Composition control for superior broadband microwave absorption performance. Appl. Surf. Sci. 453, 464–476 (2018)CrossRefGoogle Scholar
  13. 13.
    L.Y. Zhu, X.J. Zeng, X.P. Li, B. Yang, R.H. Yu, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. J. Magn. Magn. Mater. 426, 114–120 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Wang, Y. Huang, X. Sun, H.J. Huang, P.B. Liu, M. Zong, Y. Wang, Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)CrossRefGoogle Scholar
  15. 15.
    D.P. Sun, Q. Zou, Y.P. Wang, Y.J. Wang, W. Jiang, F.S. Li, Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6, 6557–6562 (2014)CrossRefGoogle Scholar
  16. 16.
    J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, Synthesis of hierarchical ZnFe2O4@SiO2@ RGO core–shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 14103–14111 (2017)CrossRefGoogle Scholar
  17. 17.
    Y.P. Wang, Z. Peng, W. Jiang, Controlled synthesis of Fe3O4@SnO2/RGO Nanocomposite for microwave absorption enhancement. Ceram. Int. 42, 10682–10689 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.C. Qing, D.D. Min, Y.Y. Zhou, F. Luo, W.C. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.T. Zhu, X. Sun, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J.P. He, Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2, 6582–6591 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.G. Xu, Z.Q. Yan, D.Y. Zhang, Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite. Appl. Surf. Sci. 356, 1032–1038 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Li, W.J. Feng, J.S. Wang, X. Zhao, W.Q. Zheng, H. Yang, Impact of silica-coating on the microwave absorption properties of carbonyl iron powder. J. Magn. Magn. Mater. 393, 82–87 (2015)CrossRefGoogle Scholar
  22. 22.
    X.B. Wu, H.L. Luo, Y.Z. Wan, Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties. Mater. Lett. 92, 139–142 (2013)CrossRefGoogle Scholar
  23. 23.
    X.F. Chen, Y. Huang, K.C. Zhang, Cobalt nanofibers coated with layered nickel silicate coaxial core-shell composites as excellent anode materials for lithium ion batteries. J. Colloid Interface Sci. 513, 788–796 (2018)CrossRefGoogle Scholar
  24. 24.
    X.F. Chen, Y. Huang, K.C. Zhang, X.S. Feng, M.Y. Wang, Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries. Electrochim. Acta 259, 131–142 (2018)CrossRefGoogle Scholar
  25. 25.
    X.F. Chen, Y. Huang, K.C. Zhang, W.C. Zhang, Cobalt fibers anchored with tin disulfide nanosheets as high-performance anode materials for lithium ion batteries. J. Colloid Interface Sci. 506, 291–299 (2017)CrossRefGoogle Scholar
  26. 26.
    X.F. Chen, Y. Huang, X.P. Han, K.C. Zhang, Synthesis of cobalt nanofibers @ nickel sulfide nanosheets hierarchical core-shell composites for anode materials of lithium ion batteries. Electrochim. Acta 284, 418–426 (2018)CrossRefGoogle Scholar
  27. 27.
    L.N. Wang, X.L. Jia, Y.F. Li, F. Yang, L.Q. Zhang, L.P. Liu, X. Ren, H.T. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2, 14940–14946 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, X.W. Yin, L. Kong, X.M. Liu, F. Ye, L.T. Zhang, L.F. Cheng, Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon 64, 537–556 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Fu, Q.Z. Jiao, Y. Zhao, H.S. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J. Mater. Chem. A 2, 735–744 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo, H.R. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1, 765–777 (2013)CrossRefGoogle Scholar
  31. 31.
    M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene- wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014)CrossRefGoogle Scholar
  32. 32.
    J.R. Liu, M. Itoh, M. Terada, T. Horikawa, Ke. Machida, Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci.: Mater. Electron. 25, 3664–3673 (2014)Google Scholar
  33. 33.
    Q.C. Liu, Z.F. Zi, M. Zhang, A.B. Pang, J.M. Dai, Y.P. Sun, Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloys Compd. 561, 65–70 (2013)CrossRefGoogle Scholar
  34. 34.
    K.C. Zhang, Q. Zhang, X.B. Gao, X.F. Chen, J.W. Shi, J.Y. Wu, Ellipsoidal Fe3O4@C nanoparticles decorated fluffy structured graphene nanocomposites and their enhanced microwave absorption properties. J. Mater. Sci.: Mater. Electron. 29, 6785–6796 (2018)Google Scholar
  35. 35.
    D.D. Min, W.C. Zhou, F. Luo, D.M. Zhu, Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite. J. Magn. Magn. Mater. 435, 26–32 (2017)CrossRefGoogle Scholar
  36. 36.
    X.H. Li, J. Feng, H. Zhu, C.H. Qu, J.T. Bai, X.L. Zheng, Sandwich-like graphene nanosheets decorated with superparamagnetic CoFe2O4 nanocrystals and their application as an enhanced electromagnetic wave absorber. RSC Adv. 4, 33619–33625 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/Reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10, 13860–13868 (2018)CrossRefGoogle Scholar
  38. 38.
    X.D. Weng, B.Z. Li, Y. Zhang, X.L. Lv, G.X. Gu, Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 695, 508–519 (2017)CrossRefGoogle Scholar
  39. 39.
    Y.C. Qing, W.C. Zhou, F. L, D.M. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48, 4074–4080 (2010)CrossRefGoogle Scholar
  40. 40.
    X. Jian, B. Wu, Y.F. Wei, S.X. Dou, X.L. Wang, W.D. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Lin, L. Xu, Z.Y. Jiang, H.L. Li, Z.X. Xie, L.S. Zheng, Facile synthesis of (Ni,Co)@ (Ni,Co)xFe3–xO4core@shell chain structures and (Ni,Co)@(Ni,Co)xFe3–xO4/graphene composites with enhanced microwave absorption. RSC Adv. 5, 70849–70855 (2015)CrossRefGoogle Scholar
  42. 42.
    Y. Zuo, J.H. Luo, M.L. Cheng, K. Zhang, R.L. Dong, Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J. Alloys Compd. 744, 310–320 (2018)CrossRefGoogle Scholar
  43. 43.
    J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanoparticles decorating reduced Graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4, 7130–7140 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanxi Province Key Laboratory of Functional Nanocomposites, College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations