The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites

  • Mehmet KuruEmail author
  • Tuğba Şaşmaz Kuru
  • Sadık Bağcı


The calcium substituted nickel-zinc ferrites with the formula of CaxNi0.75−xZn0.25Fe2O4 (x = 0, 0.25, 0.5 and 0.75) have been prepared by using the chemical co-precipitation method. The X-ray diffraction (XRD) analyses reveal the results that all the samples crystallize in cubic spinel structure and the lattice constants of the samples for x = 0, 0.25, 0.50 and 0.75 are found to be 8.334, 8.348, 8.380 and 8.538 Å, respectively. The crystallite size of the samples, obtained from Debye Scherrer’s equation, varies between 12 nm and 27 nm. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses have been conducted to reveal and determine the morphology and stoichiometry of all the prepared CaxNi0.75−xZn0.25Fe2O4 ferrite samples. The SEM images show that the partical sizes for all the samples are at nano size in accordance with the XRD results and EDX results confirm the contents of the produced samples. The dielectric and impedance properties of the prepared ferrite samples have been investigated in the frequency range from 20 Hz to 10 MHz and in the temperature range from 350 to 700 K. The real and imaginary parts of dielectric constant, tan θ, AC and DC conductivity values decrease with increasing calcium content (except x = 0). Contrary to this behavior, real and imaginary parts of impedance increase with increasing calcium content. The general AC conductivity behavior of all samples is like semiconductor behavior. The conductivity mechanism of the sample with x = 0 is explained by the mechanism of correlated barrier hopping (CBH), while it has turned into overlapping large polaron tunneling (OLPT) mechanism for all other samples. From the relaxation time graphs obtained from the impedance data, activation energies of the grain and grain boundaries are obtained. The Nyquist plots are also presented in the temperature range of 350–700 K to determine the conductivity mechanism of the prepared samples and all the plots show only one semi-circle, which means that the dominant transmission comes from the grain boundaries.



  1. 1.
    J. Smith, H.P.J. Wijn, Ferrites, Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieken, Eindhoven (1959)Google Scholar
  2. 2.
    A. Goldmann, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2010)Google Scholar
  3. 3.
    M. Hashim, A. Alimuddin, S. Kumar, B.H. Ali, H. Koo, R. Chung, J. Alloy. Compd. 511, 107–114 (2012)CrossRefGoogle Scholar
  4. 4.
    A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloy. Compd. 514, 91–96 (2012)CrossRefGoogle Scholar
  5. 5.
    T. Kuru, M. Kuru, S. Bağcı, J. Alloy. Compd. 753, 483–490 (2018)CrossRefGoogle Scholar
  6. 6.
    T. Jahanbin, M. Hashim, K.A. Mantori, J. Magn. Magn. Mater. 322, 2684–2689 (2010)CrossRefGoogle Scholar
  7. 7.
    M.A. Gabal, W.A. Bayoumy, Polyhedron 29, 2569–2573 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Praveena, K. Sadhana, S. Matteppanavar, H.-Lin Liu, J. Magn. Magn. Mater. 423, 343–352 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Paramesh, K.V. Kumar, P.V. Reddy, J. Magn. Magn. Mater. 444, 371–377 (2017)CrossRefGoogle Scholar
  10. 10.
    A.N. Spaldin, M. Fiebig, Science 309, 391–392 (2005)CrossRefGoogle Scholar
  11. 11.
    R.A. Mc Curie, Ferromagnetic Materials: Structure and Properties (Academic Press, London, 1994)Google Scholar
  12. 12.
    A.J. Baden Fuller, Ferrites at Microwave Frequencies (Peter Peregrinus, London, 1987)CrossRefGoogle Scholar
  13. 13.
    H. How, M.M. Devices, J.G. Webster, Wiley Encyclopaedia of Electrical and Electronics Engineering (Wiley, New York, 1999)Google Scholar
  14. 14.
    H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966–12972 (2013)CrossRefGoogle Scholar
  15. 15.
    G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, J. Mater. Sci.: Mater. Electron. 28, 7259–7263 (2017)Google Scholar
  16. 16.
    G.S. Luo, W.P. Zhou, J.D. Li, G.W. Jiang, S.L. Tang, Y.W. Du, Trans. Nonferrous Met. Soc. China 25, 3678–3684 (2015)CrossRefGoogle Scholar
  17. 17.
    A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626–6629 (2002)CrossRefGoogle Scholar
  18. 18.
    H. Zhong, H.W. Zhang, J. Magn. Magn. Mater. 283, 247–250 (2004)CrossRefGoogle Scholar
  19. 19.
    A.D. Sheikh, V.L. Mathe, J. Mater. Sci. 43, 2018–2025 (2008)CrossRefGoogle Scholar
  20. 20.
    H.L. Ge, Z.J. Peng, C.B. Wang, Z.Q. Fu, Int. J. Mod. Phys. B 25, 3881–3892 (2011)CrossRefGoogle Scholar
  21. 21.
    Z. Liu, Z. Peng, X. Fu, Ceram. Int. 43, 14938–14944 (2017)CrossRefGoogle Scholar
  22. 22.
    M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Ceram. Int. 43, 4357–4365 (2017)CrossRefGoogle Scholar
  23. 23.
    T. Kuru, M. Kuru, S. Bağcı, J. Mater. Sci. Mater. Electron. 29, 17160–17169 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Pasnicu, D. Condurache, E. Luca, Phys. Stat. Sol. 76, 145–150 (1983)CrossRefGoogle Scholar
  25. 25.
    E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Vigneswari, P. Raji, J. Mol Struct. 1127, 515–521 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L. John Berchmans, J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Köseoğlu, E. Şentürk, V. Eyüpoğlu, T. Şaşmaz, M. Kuru, S.S. Hashim, Meena, J. Supercond. Nov. Magn. 29, 2813–2819 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Chavan, L.R. Naik, Vacuum 152, 47–49 (2018)CrossRefGoogle Scholar
  31. 31.
    S.F. Mansour, M.A. Abdo, F.L. Kzar, J. Magn. Magn. Mater. 465, 176–185 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Srivastava, R.K. Mishra, J. Singh, N. Srivastava, N.H. Kim, J.H. Lee, J. Alloy. Compd. 645, 171–177 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Gowreesan, A. Ruban Kumar, Chin. J. Phys. 56, 1262–1272 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, J. Alloy. Compd. 649, 362–367 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Aravind, M. Raghasudha, D. Ravinder, J. Materiomics 1, 348–356 (2015)CrossRefGoogle Scholar
  37. 37.
    U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)CrossRefGoogle Scholar
  38. 38.
    I. Khorchani, O. Hafef, J.J. Reinosa, A. Matoussi, J.F. Fernandez, Mater. Chem. Phys. 212, 187–195 (2018)CrossRefGoogle Scholar
  39. 39.
    T. Kuru, E. Şentürk, V. Eyüpoğlu, J. Supercond. Nov. Magn. 30, 647–655 (2017)CrossRefGoogle Scholar
  40. 40.
    B. Ramesh, S. Ramesh, R. Vijaya Kumar, M. Lakshmipathi Rao, J. Alloy. Compd. 513, 289–293 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Azam, J. Alloy. Compd. 540, 145–153 (2012)CrossRefGoogle Scholar
  42. 42.
    M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 1–9 (2017)CrossRefGoogle Scholar
  43. 43.
    R.K. Panda, D. Behera, J. Alloy. Compd. 587, 481–486 (2014)CrossRefGoogle Scholar
  44. 44.
    K.M. Batoo, Physica B 406, 382–387 (2011)CrossRefGoogle Scholar
  45. 45.
    E. Şentürk, Y. Köseoğlu, T. Şaşmaz, F. Alan, M. Tan, J. Alloy. Compd. 578, 90–95 (2013)CrossRefGoogle Scholar
  46. 46.
    M.A. Elkestawy, J. Alloy. Compd. 492, 616–620 (2010)CrossRefGoogle Scholar
  47. 47.
    I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, J. Alloy. Compd. 579, 576–582 (2013)CrossRefGoogle Scholar
  48. 48.
    R.N. Bhowmik, M.C. Aswathi, Compos. B 160, 457–470 (2019)CrossRefGoogle Scholar
  49. 49.
    F.S.H. Abu-Samaha, M.I.M. Ismail, Mater. Sci. Semicond. Process. 19, 50–56 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials EngineeringOndokuz Mayıs UniversitySamsunTurkey
  2. 2.Department of Materials Science and EngineeringErciyes UniversityKayseriTurkey
  3. 3.Vocational School of Health Services, Radiotherapy Programİstanbul Okan UniversityIstanbulTurkey
  4. 4.Department of PhysicsSakarya UniversitySakaryaTurkey

Personalised recommendations