Advertisement

Core–shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes

  • Shuyan QiEmail author
  • Depeng Wang
  • Yadong Zhao
  • Huanyan Xu
Article

Abstract

The core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with excellent photocatalytic performance were synthesized via a simple co-precipitation hydrothermal method. The photocatalytic performance of the g-C3N4@Zn0.5Cd0.5S was significantly increased by the heterojunction structure, which improved the separation and mobility of the photogenerated carriers. The highest degradation efficiency was for the 50% g-C3N4@Zn0.5Cd0.5S (99%), and its degradation rate was 15.7 which was 3.7 times those of the pure g-C3N4 and Zn0.5Cd0.5S, respectively. The catalyst band gap gradually decreased with the increasing content of g-C3N4. The capture agent experiments revealed that the main active substances in the degradation process are h+ and O2−·. The photocatalytic activity remained at 95% after 4 cycles showing good light stabilities. This study provided a simple method for synthesizing the g-C3N4/ZnCdS heterojunctions with an excellent photocatalytic property.

Notes

Acknowledgements

The project was supported by National Youth Fund Project of China (Grant No. 51404083).

References

  1. 1.
    J. Chen, B.B. Ding, T.Y. Wang, F. Li, Y. Zhang, Y.L. Zhao, H.S. Qian, J. Mater. Sci. 25, 4103–4109 (2014)Google Scholar
  2. 2.
    J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, H. Li, Chin. J. Catal. 34, 1876–1882 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Li, S. Xue, P. Xie, H. Feng, X. Hou, Z. Liu, R. Zou, Electron. Mater. Lett. 14, 739–748 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Zewde, O.P. Yadav, A.M. Taddesse, Curr. Phys. Chem. 7, 172–180 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Zhang, H. Liu, W. Wang, H. Qian, S. Cheng, Y. Wang, Y. Hu, Appl. Catal. B 239, 309–316 (2018)CrossRefGoogle Scholar
  6. 6.
    A.G. Kyazym-zade, M.A. Jafarov, E.F. Nasirov, C.A. Jahangirova, R.S. Jafarli, Semiconductors 51, 454–457 (2017)CrossRefGoogle Scholar
  7. 7.
    H.F. Ye, R. Shi, X. Yang, W.F. Fu, Y. Chen, Appl. Catal. B 233, 70–79 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Askari, N. Soltani, E. Saion, W.M.M. Yunus, H.M. Erfani, M. Dorostkar, Superlattices Microstruct. 81, 193–201 (2015)CrossRefGoogle Scholar
  9. 9.
    W. Wang, W. Zhu, H. Xu, J. Phys. Chem. C 112, 16754–16758 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, W.N. Wang, M.L. Zhao, C.Y. Zhang, C.X. Huang, S. Cheng, H.S. Qian, Langmuir. 34, 9264–9271 (2018)CrossRefGoogle Scholar
  11. 11.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116(12), 7159–7329 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu, Y. Jie, J. Ye, Appl. Catal. B 204, 335–345 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, G. Liu, Appl. Catal. B 207, 103–113 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Li, Q. Zhang, X. He, M. Chen, Appl. Clay. Sci. 151, 201–210 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Wu, Y. Yao, W. Li, L. Zhu, N. Ni, X. Zhang, Mol. Microbiol. Biotechnol. 13, 2225–2234 (2011)Google Scholar
  16. 16.
    H. Xu, L. Wu, L. Jin, K. Wu, J. Mater. Sci. Technol. 33, 30–38 (2017)CrossRefGoogle Scholar
  17. 17.
    Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, B. Su, Eur. J. Inorg. Chem. 2015, 4108–4115 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, S. Yuan, J. Mol. Catal. A 395, 261–268 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.X. Dong, J.T. Cao, B. Wang, S.H. Ma, Y.M. Liu, ACS Appl. Mater. Interface 10, 3723–3731 (2018)CrossRefGoogle Scholar
  20. 20.
    L.C. Wu, H.Y. Xu, H. Zhao, Appl. Mech. Mater. 618, 215–219 (2014)CrossRefGoogle Scholar
  21. 21.
    J.Y. Zhang, Y.H. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interface 5, 10317–11032 (2013)CrossRefGoogle Scholar
  22. 22.
    U. Mizutani, MRS Bull. 37, 169–169 (2012)CrossRefGoogle Scholar
  23. 23.
    R.G. Chaudhuri, A. Chaturvedi, E. Iype, Mater. Res. Express. 5, 036202 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Appl. Catal. B 203, 343–354 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72–123 (2017)CrossRefGoogle Scholar
  26. 26.
    W.K. Jo, N.C.S. Selvam, Chem. Eng. J. 317, 913–924 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Qian, H. Shaozheng, L. Fayun, F. Zhiping, W. Qiong, W. Fei, L. Daosheng, Chem. J. Chin. U. 37, 521–528 (2016)Google Scholar
  28. 28.
    B. Xue, H.Y. Jiang, T. Sun, F. Mao, Catal. Lett. 146, 2185–2192 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Feng, T. Chen, S. Liu, Q. Zhou, Y. Ren, Y. Lv, Z.J. Fan, J. Colloid Interface Sci. 479, 1–6 (2016)CrossRefGoogle Scholar
  30. 30.
    Y.G. Li, X.L. Wei, H.J. Li, R.R. Wang, J. Feng, H. Yun, A.N. Zhou, RSC Adv. 5(1), 14074–14080 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Li, J. Li, C. Xu, P. Yang, D.H. Ng, P. Song, M. Zuo, J. Alloys Compd. 698, 852–862 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Liu, W. Yang, C. Yu, H. Zhang, J. Environ. Chem. Eng. 6(4), 4899–4907 (2018)CrossRefGoogle Scholar
  33. 33.
    X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, B. Huang, Appl. Catal. B 220, 356–361 (2018)CrossRefGoogle Scholar
  34. 34.
    X. Liu, P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu, Y. Yan, Colloids Surf. A 441, 420–426 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Wang, S. Li, C. Pan, S. Liu, T. Luo, G. Dai, J. Chin. Chem. Soc. 65, 252–258 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interface 8, 27661–27668 (2016)CrossRefGoogle Scholar
  37. 37.
    Q. Nie, Q. Yuan, Q. Wang, Z. Xu, J. Mater. Sci. Lett. 39, 5611–5612 (2004)CrossRefGoogle Scholar
  38. 38.
    Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, Appl. Surf. Sci. 358, 188–195 (2015)CrossRefGoogle Scholar
  39. 39.
    X.H. Yang, H.T. Fu, X.Z. An, X.C. Jiang, A.B. Yu, RSC Adv. 6, 34103–34109 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, J. Hazard. Mater. 217, 107–115 (2012)CrossRefGoogle Scholar
  41. 41.
    C. Zhang, Y. Lu, Q. Jiang, J. Hu, Nanotechnology. 27, 355402 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Sun, T. Yan, Q. Yan, H. Liu, L. Yan, Y. Zhang, B. Du, RSC Adv. 4, 19980–19986 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, Appl. Surf. Sci. 295, 164–172 (2014)CrossRefGoogle Scholar
  44. 44.
    Y. Xu, W.D. Zhang, Eur. J. Inorg. Chem. 2015, 1744–1751 (2015)CrossRefGoogle Scholar
  45. 45.
    Y. Sun, J. Jiang, Y. Cao, Y. Liu, S. Wu, J. Zou, Mater. Lett. 212, 288–291 (2018)CrossRefGoogle Scholar
  46. 46.
    L. Zhang, F. Huang, C. Liang, L. Zhou, X. Zhang, Q. Pang, J. Taiwan Inst. Chem. Eng. 60, 643–650 (2016)CrossRefGoogle Scholar
  47. 47.
    D. Peng, H. Wang, K. Yu, Y. Chang, X. Ma, S. Dong, RSC Adv. 6, 77760–77767 (2016)CrossRefGoogle Scholar
  48. 48.
    D. Wang, Z. Xu, Q. Luo, X. Li, J. An, R. Yin, C. Bao, J. Mater. Sci. Lett. 51, 893–902 (2016)CrossRefGoogle Scholar
  49. 49.
    X. Hao, Z. Jin, S. Min, G. Lu, RSC Adv. 6, 23709–23717 (2016)CrossRefGoogle Scholar
  50. 50.
    Z.L. Fang, H.F. Rong, L.Y. Zhou, P. Qi, J. Mater. Sci. 50, 3057–3064 (2015)CrossRefGoogle Scholar
  51. 51.
    L. Shi, F. Wang, J. Zhang, J. Sun, Ceram. Int. 42, 18116–18123 (2016)CrossRefGoogle Scholar
  52. 52.
    L. Shi, J. Ma, L. Yao, L.S. Cui, W. Qi, J Colloid Interface Sci. 519, 1–10 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuyan Qi
    • 1
    Email author
  • Depeng Wang
    • 1
  • Yadong Zhao
    • 1
  • Huanyan Xu
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations