Electrical and photoluminescence properties of (Bi0.5−x/0.94Erx/0.94Na0.5)0.94Ba0.06TiO3 lead-free ceramics

  • Li-na Liu
  • Xiao-ming ChenEmail author
  • Rui-yi Jing
  • Han-li Lian
  • Wen-wen Wu
  • Yan-ping Mou
  • Peng Liu


In this paper, electrical and photoluminescence properties of the (Bi0.5−x/0.94Erx/0.94Na0.5)0.94Ba0.06TiO3 lead-free ceramics with x ≤ 0.02 were investigated. All ceramics have pure perovskite phase. Lattice distortion induced by the doping of Er3+ was observed. The ceramics show average grain sizes around 0.6–1.0 µm. The doped ceramics exhibit decreased dielectric constant, which are still higher than 1200 at room temperature. Curie temperatures of the samples do not fluctuate dramatically with changing the doping amounts, which are around 250 °C. The piezoelectric constant d33 is closely related to the Er3+ content. Under an excitation of 487 nm, the ceramics exhibit visible luminescent emissions at 528 nm (green), 548 nm (green), and 670 nm (red).



This work was supported by Shaanxi Province Science and Technology Foundation (2018JM1009), Fundamental Research Funds for the Central Universities (Nos. GK201803017, GK201901005), and National Innovation and Entrepreneurship Training Program for College Students (No. CX2018105).


  1. 1.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  2. 2.
    L.J. Liu, M. Knapp, H. Ehrenberg, L. Fang, L.A. Schmitt, H. Fuess, M. Hoelzel, M. Hinterstein, J. Appl. Crystallogr. 49, 574 (2016)CrossRefGoogle Scholar
  3. 3.
    D.W. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q.L. Zhao, I.M. Reaney, J. Am. Ceram. Soc. 100, 627 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Pascual-Gonzalez, G. Schileo, S. Murakami, A. Khesro, D.W. Wang, Appl. Phys. Lett. 110, 172902 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Pascual-Gonzalez, G. Schileo, A. Khesro, I. Sterianou, D.W. Wang, I.M. Reaney, A. Feteira, J. Mater. Chem. C 5, 1990 (2017)CrossRefGoogle Scholar
  6. 6.
    S.Z. Erika Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Chen, L. Fang, B. Elouadi, J. Appl. Phys. 113, 094102 (2013)CrossRefGoogle Scholar
  7. 7.
    T. Takenaka, K. Maruyama, K. Sakata, J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  8. 8.
    L.J. Liu, D.P. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116, 184104 (2014)CrossRefGoogle Scholar
  9. 9.
    F. Li, G.R. Chen, X. Liu, J.W. Zhai, B. Shen, S.D. Li, P. Li, K. Yang, H.R. Zeng, H.X. Yan, Appl. Phys. Lett. 110, 182904 (2017)CrossRefGoogle Scholar
  10. 10.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995 (2016)CrossRefGoogle Scholar
  11. 11.
    X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, J. Am. Ceram. Soc. 99, 198 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Glaum, H. Simons, M. Acosta, M. Hoffman, J. Am. Ceram. Soc. 96, 2881 (2013)CrossRefGoogle Scholar
  13. 13.
    H.Q. Sun, D.F. Peng, X.S. Wang, M.M. Tang, Q.W. Zhang, X. Yao, J. Appl. Phys. 110, 016102 (2011)CrossRefGoogle Scholar
  14. 14.
    H.L. Pan, J.J. Zhang, X.R. Jia, H.J. Xing, J.Y. He, J.Y. Wang, F. Wen, Ceram. Int. 44, 5785 (2018)CrossRefGoogle Scholar
  15. 15.
    A.S. Herabut, J. Am. Ceram. Soc. 80, 2954 (1997)CrossRefGoogle Scholar
  16. 16.
    H.Q. Sun, Q.W. Zhang, X.S. Wang, Y. Zhang, Ceram. Int. 40, 15669 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Hu, Z. Pan, M. Dai, F.F. Guo, H.P. Ning, Z.B. Gu, J. Chen, M.H. Lu, S.T. Zhang, B. Yang, W.W. Cao, J. Am. Ceram. Soc. 97, 3877 (2014)CrossRefGoogle Scholar
  18. 18.
    C.M. Lau, X. Wu, K.W. Kwok, J. Appl. Phys. 118, 034107 (2015)CrossRefGoogle Scholar
  19. 19.
    B.H. Toby, J. Appl. Cryst. 34, 210 (2001)CrossRefGoogle Scholar
  20. 20.
    D.W. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q.L. Zhao, X.L. Tan, I.M. Reaney, J. Mater. Chem. A 6, 4133 (2018)CrossRefGoogle Scholar
  21. 21.
    D.W. Wang, Z.M. Fan, W.B. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q.L. Zhao, X.L. Tan, I.M. Reaney, ACS Appl. Energy Mater. 1, 4403 (2018)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  23. 23.
    C.W. Tai, S.H. Choy, H.L.W. Chan, J. Am. Ceram. Soc. 91, 3335 (2008)CrossRefGoogle Scholar
  24. 24.
    R.Y. Jing, X.M. Chen, H.L. Lian, X.S. Qiao, X.J. Shao, J.P. Zhou, J. Eur. Ceram. Soc. 38, 3111 (2018)CrossRefGoogle Scholar
  25. 25.
    T. Wang, X.M. Chen, Y.Z. Qiu, H.L. Lian, W.T. Chen, Mater. Chem. Phys. 186, 407 (2017)CrossRefGoogle Scholar
  26. 26.
    Z.D. Yu, X.M. Chen, Physica B 503, 7 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Jin, F. Li, S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Dong, H. Fan, J. Shi et al., J. Am. Ceram. Soc. 98, 1150 (2015)CrossRefGoogle Scholar
  29. 29.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  30. 30.
    D.F. Peng, X.S. Wang, C.N. Xu, X. Yao, J. Lin, T.T. Sun, J. Am. Ceram. Soc. 96, 184 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Chen, M.J. Wu, L.Q. An, Y.X. Li, S.W. Wang, J. Am. Ceram. Soc. 90, 664 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China

Personalised recommendations