Advertisement

Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability

  • K. Mohamed Racik
  • K. Guruprasad
  • M. Mahendiran
  • J. Madhavan
  • T. Maiyalagan
  • M. Victor Antony RajEmail author
Article
  • 17 Downloads

Abstract

Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO2/NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO2/NiO nanocomposite electrode material as a supercapacitor. The MnO2/NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg−1 at the discharge current density rate of 0.5 Ag−1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO2/NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO2/NiO electrode material shown enhanced performance for supercapacitors.

Notes

References

  1. 1.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar
  2. 2.
    M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647–12659 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, B. Zhang, F. Wang, Z. Wen, Y. Wu, Pure Appl. Chem. 86, 593–609 (2014)Google Scholar
  4. 4.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  5. 5.
    H.B. Wu, G. Zhang, L. Yu, X.W. Lou, Nanoscale Horiz. 1, 27–40 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013)Google Scholar
  7. 7.
    M.S. Nooshabadi, F. Zahedi, Electrochim. Acta 245, 575–586 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. L.Deng, J. Hao, Wang et al., Electrochim. Acta 89, 191–198 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Zhao, J. Yu, W. Li, S. Wang, C. Dai, J. Wu, X. Bai, C. Zhi, Nano Energy 4, 39–48 (2014)CrossRefGoogle Scholar
  10. 10.
    C.-L. Tang, X. Wei, Y.-M. Jiang, X.-Y. Wu, L.N. Han, K.-X. Wang, J.-S. Chen, J. Phys. Chem. C 119, 8465–8471 (2015)CrossRefGoogle Scholar
  11. 11.
    S.J. Zhu, J.Q. Jia, T. Wang, D. Zhao, J. Yang, F. Dong, Z.G. Shang, Y.X. Zhang, Chem. Commun. (2015).  https://doi.org/10.1039/c5cc03976b Google Scholar
  12. 12.
    Y. Hu, J. Wang, J. Power Sources 286, 394–399 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Li, K. Xu, B. Li, J. Sun, F. Jiang, Z. Yu, R. Zou, Z. Chen, J. Hu, ChemElectroChem 1, 1003–1008 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 4, 2915–2921 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Xiao, J.-W. Li, G.-F. Chen, Z.-Q. Liu, N. Li, Y.-Z. Su, Electrochim. Acta 149, 341–348 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Wang, Y. Zhan, L. Wu, Y. Li, J. Liu, Nanotechnology 25, 305401 (2014)CrossRefGoogle Scholar
  17. 17.
    L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Adv. Mater. 25, 4746–4752 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Liu, M. Jiang, H.J. Bosman, Fan, J. Mater. Chem. 22, 2419–2426 (2012)CrossRefGoogle Scholar
  19. 19.
    S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces 5, 1596–1603 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Zhao, L. Zhang, S. Murali, M.D. Stoller, Q. Zhang, Y. Zhu, R.S. Ruoff, ACS Nano 6, 5404–5412 (2012)CrossRefGoogle Scholar
  21. 21.
    J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076–2081 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angew. Chem. Int. Ed. 125, 1708–1711 (2013)CrossRefGoogle Scholar
  23. 23.
    C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, J. Mater. Chem. 19, 5772–5777 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Qian, R. Liu, Q.F. Wang, J. Xu, D. Chen, G.Z. Shen, J. Mater. Chem. A 2, 10917–10922 (2014)CrossRefGoogle Scholar
  25. 25.
    J.P. Liu, J. Jiang, M. Bosman, H.J. Fan, J. Mater. Chem. 22, 2419–2426 (2012)CrossRefGoogle Scholar
  26. 26.
    Y.H. Li, H.R. Peng, C. Zhang, M.S. Chu, P. Xiao, Y.H. Zhang, RSC Adv. 5, 77115–77121 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Chen, Y. Huang, C. Li, X. Chen, X. Zhang, Appl. Surf. Sci. 360, 534–539 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Bi, A. Nautiyal, H. Zhang, J. Luo, X. Zhang, Electrochim. Acta 260, 952–958 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Xi, Y. Zhu, Y. Yang, S. Jiang, Z. Tang, Nanoscale Res. Lett. 12, 171 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Wang, X. Fan, X. Zhang, Y. Huang, Q. Wu, Q. Pan, Q. Li, RSC Adv. 7, 23328 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, ACS Nano 12(2), 1033–1042 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Ma, Y. Zhang, W. Yu, H.Y. Shen, H.Q. Zhang, N. Gu, Colloids Surf. A 212, 219 (2003)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, Q. Wang, J. Zhang, J. Wang, M. Guo, S. Chen, C. Li, C. Hu, Y. Xie, RSC Adv. 5, 89976–89984 (2015)CrossRefGoogle Scholar
  34. 34.
    M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, J. Mater. Sci. Mater. Electron. 29(17), 15006–15021 (2018)CrossRefGoogle Scholar
  35. 35.
    A.P. Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14–28 (2018)CrossRefGoogle Scholar
  36. 36.
    L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11, 1215 (2011)CrossRefGoogle Scholar
  37. 37.
    J.-H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins, A. Frank, Nano Lett. 10, 4099 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Kim, B.N. Popov, J. Electrochem. Soc. 150, D56 (2003)CrossRefGoogle Scholar
  39. 39.
    H. Wei, J. Wang, L. Yu, Y. Zhang, D. Hou, T. Li, Ceram. Int. 42(13), 14963–14969 (2016)CrossRefGoogle Scholar
  40. 40.
    Y. Haldorai, K. Giribabu, S.K. Hwang, C.H. Kwak, Y.S. Huh, Y.K. Han, Electrochim. Acta 222, 717–727 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Zhong, F. Yi, A. Gao, D. Shu, Y. Huang, Z. Li, W. Zhu, C. He, T. Meng, S. Zhao, ChemElectroChem. 4, 1088–1094 (2017)CrossRefGoogle Scholar
  42. 42.
    K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, N. Manyala, Chem. Eng. J. 335, 416–433 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Chen, C. Hu, Electrochem. Solid-State Lett. 6, 210–213 (2003)CrossRefGoogle Scholar
  44. 44.
    J. Zhou, X. Shen, M. Jing, J. Mater. Sci. Technol. 22, 803–806 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLoyola CollegeChennaiIndia
  2. 2.Loyola Institute of Frontier Energy (LIFE)Loyola CollegeChennaiIndia
  3. 3.Department of ChemistrySRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations