Maximizing the photocatalytic hydrogen evolution of Z-scheme UiO-66-NH2@Au@CdS by aminated-functionalized linkers
Abstract
The Z-scheme photocatalysts with matched rates for reduction and oxidation half reactions benefit from the advantages of efficient light harvesting and effective separation of electron–hole pairs, which can maximize the water splitting performance. However, the 4-electron reaction and the slow transfer of holes render the oxidation reaction upon oxygen evolution photocatalyst to be the rate-determining step. Herein, we report on promoting the oxidation reaction in UiO-66-NH2@Au@CdS Z-scheme photocatalysts by using the aminated-functionalized linker bdc-NH2. Compared with pristine UiO-66 MOFs, UiO-66-NH2 not only extends the light harvesting range but also offers the high oxidation reaction performance matched with photocatalytic hydrogen generation. As a result, the highest H2 generation rate obtained is 39.5 µmol h−1, which is 2.18 times higher than that of the Z-scheme photocatalysts constructed by UiO-66. The present work clearly shows the essential importance in tuning the oxidation capacity of photosystem II in constructing Z-scheme photocatalysts for maximizing the water splitting.
Notes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (51872003, 51572003), the SRF for ROCS, SEM, and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China. G. Xu and H. Du acknowledged the Research Start-up Fund of Anhui University (No. J01003210 and S01002112).
Supplementary material
References
- 1.H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5, 782 (2006)Google Scholar
- 2.P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26, 4920 (2014)Google Scholar
- 3.H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 3, 1500389 (2016)Google Scholar
- 4.K. Maeda ACS Catal. 3: 1486 (2013)Google Scholar
- 5.Q. Wang, T. Hisatomi, Q. Jia et al., Nat. Mater. 15, 611 (2016)Google Scholar
- 6.A. Kudo, MRS Bull. 36, 32 (2011)Google Scholar
- 7.C. Liu, J. Tang, H.M. Chen, B. Liu, P. Yang, Nano Lett. 13, 2989 (2013)Google Scholar
- 8.A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054 (2011)Google Scholar
- 9.Z.-F. Huang, J. Song, X. Wang et al., Nano Energy 40, 308 (2017)Google Scholar
- 10.P. Li, Y. Zhou, H. Li et al., Chem. Commun. 51, 800 (2014)Google Scholar
- 11.S. Chen, Y. Qi, T. Hisatomi et al., Angew. Chem. 127, 8618 (2015)Google Scholar
- 12.D.J. Martin, P.J.T. Reardon, S.J. Moniz, J. Tang, J. Am. Chem. Soc. 136, 12568 (2014)Google Scholar
- 13.Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, Adv. Mater. 29, 1606688 (2017)Google Scholar
- 14.J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450 (2009)Google Scholar
- 15.H.-L. Jiang, T.A. Makal, H.-C. Zhou, Coord. Chem. Rev. 257, 2232 (2013)Google Scholar
- 16.J.-L. Wang, C. Wang, W. Lin, ACS Catal. 2, 2630 (2012)Google Scholar
- 17.Y. Li, H. Xu, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 18, 7563 (2016)Google Scholar
- 18.Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu Adv. Mater.: 1702891 (2017)Google Scholar
- 19.L. Jiao, Y. Wang, H.L. Jiang, Q. Xu Adv. Mater.: 1703663 (2017)Google Scholar
- 20.A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47, 8134 (2018)Google Scholar
- 21.A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 55, 5414 (2016)Google Scholar
- 22.C.H. Hendon, D. Tiana, M. Fontecave et al., J. Am. Chem. Soc. 135, 10942 (2013)Google Scholar
- 23.M.B. Chambers, X. Wang, L. Ellezam et al., J. Am. Chem. Soc. 139, 8222 (2017)Google Scholar
- 24.T.W. Goh, C. Xiao, R.V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 124, 45 (2015)Google Scholar
- 25.L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 17, 117 (2015)Google Scholar
- 26.M. Kim, J.F. Cahill, Y. Su, K.A. Prather, S.M. Cohen, Chem. Sci. 3, 126 (2012)Google Scholar
- 27.J. Santaclara, A. Olivos-Suarez, I. Fossé et al., Faraday Discuss. 201, 71 (2017)Google Scholar
- 28.J. Tian, Z.-Y. Xu, D.-W. Zhang et al., Nat. Commun. 7, 11580 (2016)Google Scholar
- 29.E.A. Dolgopolova, N.B. Shustova, MRS Bull. 41, 890 (2016)Google Scholar
- 30.L. Wu, Y. Tong, L. Gu, Z. Xue, Y. Yuan, Sustain. Energy Fuels 2, 2502 (2018)Google Scholar
- 31.R. Wang, L. Gu, J. Zhou et al., Adv. Mater. Interfaces 2, 1500037 (2015)Google Scholar
- 32.J.-J. Zhou, R. Wang, X.-L. Liu et al., Appl. Surf. Sci. 346, 278 (2015)Google Scholar
- 33.Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, C. Xue, Appl. Catal. B 168, 572 (2015)Google Scholar
- 34.L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, J. Mater. Chem. A 1, 11473 (2013)Google Scholar
- 35.S.-W. Cao, J. Fang, M.M. Shahjamali et al., CrystEngComm 14, 7229 (2012)Google Scholar
- 36.Y. Wang, Y. Zhang, Z. Jiang et al., Appl. Catal. B 185, 307 (2016)Google Scholar
- 37.S. Aryal, B. Remant, N. Dharmaraj, N. Bhattarai, C.H. Kim, H.Y. Kim, Spectrochim. Acta A 63, 160 (2006)Google Scholar
- 38.G.-S. Li, D.-Q. Zhang, J.C. Yu, Environ. Sci. Technol. 43, 7079 (2009)Google Scholar
- 39.Z. Zhang, A. Li, S.-W. Cao, M. Bosman, S. Li, C. Xue, Nanoscale 6, 5217 (2014)Google Scholar
- 40.W. Luo, Z. Li, T. Yu, Z. Zou, J. Phys. Chem. C 116, 5076 (2012)Google Scholar
- 41.Y.-P. Yuan, L.-W. Ruan, J. Barber, S.C.J. Loo, C. Xue, Energy Environ. Sci. 7, 3934 (2014)Google Scholar
- 42.S.-W. Cao, Z. Yin, J. Barber, F.Y. Boey, S.C.J. Loo, C. Xue, ACS Appl. Mater. Interfaces 4, 418 (2011)Google Scholar
- 43.J. Wang, J. Zhao, F. Osterloh, Energy Environ. Sci. 8, 2970 (2015)Google Scholar