Synthesis and low temperature densification of (Zr0.8Sn0.2)TiO4 ceramics with improved dielectric properties

  • Liming Zhang
  • Wenyuan Gong
  • Miao Xin
  • Yi Chang
  • Xianfu Luo
  • Hongqing ZhouEmail author


A conventional solid-stated reaction was used to synthesize the (Zr0.8Sn0.2)TiO4 powders with varying pre-sintering temperature parameters. Through evaluating the synthetical properties of sintered ceramics prepared by different calcining methods, R3 route with a soaking time of 1.5 h and cooling rate of 3 °C min−1 was determined as the optimal pre-sintering process. Subsequently, La2O3/CBS additives were added into ZST powders, leading to depression of sintering temperature and additional performance improvements, as long as the additive was supplemented in proper weight percent. Nevertheless, excessive additives deteriorated the microstructures of ZST samples, resulting in the decrease of dielectric properties. In this work, the phase contents, microstructures, sintered densities, dielectric performances, and sintering characteristics of ZST specimens were comprehensively studied. A near-zero τf = − 3.69 ppm °C−1 associated with optimal dielectric performances of εr = 40.08, Q×f = 42600 GHz (f = 5.54 GHz) was achieved for doped specimen with 0.25 wt% La2O3 + 0.25 wt% CBS additions sintered at 1280 °C for 4 h.



The authors are grateful to the support of this study by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites.


  1. 1.
    Y.G. Zhao, P. Zhang, Dalton Trans. 45(29), 11807 (2016)CrossRefGoogle Scholar
  2. 2.
    W.T. Xie, H.Q. Zhou, H.K. Zhu et al., Ceram. Int. 40(5), 6899 (2014)CrossRefGoogle Scholar
  3. 3.
    Z.Z. Weng, H. AminiRastabi, Z.X. Xiong et al., J. Alloys Compd. 725, 1063 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Varghese, T. Joseph, M.T. Sebastian et al., J. Am. Ceram. Soc. 93(10), 2960 (2010)CrossRefGoogle Scholar
  5. 5.
    G.A. Ravi, F. Azough, R. Freer, J. Eur. Ceram. Soc. 27(8–9), 2855 (2017)Google Scholar
  6. 6.
    Q.L. Sun, H.Q. Zhou, X.F. Luo et al., Ceram. Int. 42(10), 12306 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Laishram, O.P. Thakur, D.K. Bhattacharya, Mater. Lett. 65(11), 1678 (2011)CrossRefGoogle Scholar
  8. 8.
    J.L. Qi, M.H. Cao, Y.Y. Chen et al., J. Alloys Compd. 762, 950 (2018)CrossRefGoogle Scholar
  9. 9.
    Z.Q. Li, F. Gao, G.X. Hu et al., J. Mater. Sci. Mater. Electron. 25(11), 5020 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.S. Ahn, K.H. Yoon, E.S. Kim, J. Eur. Ceram. Soc. 23(14), 2519 (2003)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Li, Y. Zhang, X.C. Lu et al., J. Mater. Sci. Mater. Electron. 28(4), 3380 (2017)CrossRefGoogle Scholar
  12. 12.
    S.X. Zhang, J.B. Li, H.Z. Zhai et al., Ceram. Int. 28(4), 407 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloys Compd. 475(1–2), 745 (2009)CrossRefGoogle Scholar
  14. 14.
    M.V. Jacob, U. Pamu, K.C.J. Raju, J. Am. Ceram. Soc. 90(5), 1511 (2007)CrossRefGoogle Scholar
  15. 15.
    B. Chen, L. Han, B.Y. Li et al., J. Mater. Sci. Mater. Electron. 28(13), 9542 (2017)CrossRefGoogle Scholar
  16. 16.
    X.D. Xie, X.L. Tang, Y.L. Jing et al., Ceram. Int. 44(11), 13165 (2018)CrossRefGoogle Scholar
  17. 17.
    A. McHale, R. Roth, J. Am. Ceram. Soc. 69, 827 (1986)CrossRefGoogle Scholar
  18. 18.
    J.M. Li, C.G. Fan, T. Qiu, Ceram. Int. 41(10), 14930 (2015)CrossRefGoogle Scholar
  19. 19.
    S.H. Jin, H.P. Xia, Y.P. Zhang, Ceram. Int. 35(1), 309 (2009)CrossRefGoogle Scholar
  20. 20.
    Y.J. Gu, C. Li, J.L. Huang et al., J. Eur. Ceram. Soc. 37(15), 4673 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Hirano, T. Hayashi, A. Hattori, J. Am. Ceram. Soc. 74, 1320 (1991)CrossRefGoogle Scholar
  22. 22.
    Y.P. Long, Y.L. Wang, W.J. Wu et al., J. Am. Ceram. Soc. 92(11), 2630 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloys Compd. 509(38), 9289 (2011)CrossRefGoogle Scholar
  24. 24.
    H.Y. Yang, E.Z. Li, H.C. Yang et al., Int. J. Appl. Glass. Sci. 9(3), 392 (2018)CrossRefGoogle Scholar
  25. 25.
    L.C. Ren, X.F. Luo, H.Q. Zhou, J. Am. Ceram. Soc. 101(9), 3874 (2018)CrossRefGoogle Scholar
  26. 26.
    R.D. Shannon, J. Appl. Phys. 73(1), 348 (1993)CrossRefGoogle Scholar
  27. 27.
    M. Xin, L.M. Zhang, Y. Chang et al., Ceram. Int. 44(14), 17107 (2018)CrossRefGoogle Scholar
  28. 28.
    L.M. Zhang, Y. Chang, M. Xin et al., J. Mater. Sci. Mater. Electron. 29(24), 21205 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Takahashi, A. Kan, H. Ogawa, Mater. Chem. Phys. 200, 257 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Wang, Q. Li, J.Q. Gu et al., J. Mater. Sci. 52, 9335 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina

Personalised recommendations