Influence of nanoparticle size on nucleation of electroactive phase and energy storage behaviour of zinc ferrite/ poly(vinylidene fluoride) nanocomposite

  • Ipsita Chinya
  • Shrabanee SenEmail author


The incorporation of different size of nanoparticles in polymer matrix plays a dominating role in determining the overall structural, microstructural and electrical properties of the fabricated composites. In this paper, an investigation was done in order to establish the effect of incorporating different size of zinc ferrite (ZF) nanoparticles in poly(vinylidene fluoride) (PVDF) matrix. The incorporated spherical ZF nanoparticle induced nucleation of electroactive phases in PVDF matrix by means of electrostatic interaction between the surface charge of the filler and the dipoles of PVDF. The fraction of nucleated electroactive phases is strongly dependent on the size of the nanoparticles. There is a critical size of the nanoparticle, below which the nucleation efficiency of the filler diminishes as it may be swelled by the polymer macromolecules. On the other hand, if the filler size is too large, there is a possibility of formation of mixed conformation of polar and nonpolar phase. Further, this behaviour was correlated with the electrical response of composite where nanoparticle with the critical radius incorporated PVDF composite, exhibited maximum dielectric and ferroelectric property. Finally, a number of participating dipoles of polymer chain interact with ZF nanoparticle of different size were calculated by a model analysis and were represented schematically.



Authors wish to acknowledge the Director, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI) Kolkata for his kind inspiration to publish this work. One of the authors, I. Chinya thanks CSIR, Govt. of India for providing her senior research fellowship and AcSIR-CSIR-CGCRI for the academic support. The authors thankfully acknowledge Dr. Dipten Bhattacharya, Senior Principal Scientist, Advanced Mechanical and Materials Characterization Division, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research) and his group for magnetic measurement and related discussion. The work has been done as an associated research work under MeitY funded three years Project GAP0351.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10854_2019_812_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 KB)


  1. 1.
    Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.W. Nan Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J. Mater. Chem. 22, 8063–8068 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937–2954 (2012)CrossRefGoogle Scholar
  3. 3.
    V.K. Prateek, R.K. Thakur, Gupta recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)CrossRefGoogle Scholar
  4. 4.
    D. Guo, K. Cai, Y. Wang, A distinct mutual phase transition in a new PVDF based lead-free composite film with enhanced dielectric and energy storage performance and low loss. J. Mater. Chem. C 5, 2531–2541 (2017)CrossRefGoogle Scholar
  5. 5.
    M.S. Sebastian, A. Larrea, R. Gonçalves, T. Alejo, J.L. Vilas, V. Sebastian, P. Martins, S. Lanceros-Mendez, Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures. RSC Adv. 6, 113007–113015 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Abdalla, A. Obaid, F.M.A. Marzouki, Preparation and characterization of poly(vinylidene fluoride): a high dielectric performance nano-composite for electrical storage. Result Phys 6, 617–626 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Roy, P. Thakur, N.A. Hoque, B. Bagchi, S. Das, Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv. 6, 21881–21894 (2016)CrossRefGoogle Scholar
  8. 8.
    I. Chinya, S. Sen Improved dielectric and touch sensing performance of surface modified zinc ferrite (ZF)/polyvinylidene fluoride (PVDF) composite. Sens. Actuator A 267, 301–309 (2017)CrossRefGoogle Scholar
  9. 9.
    C.L. Liang, Z.H. Mai, Q. Xie, R.Y. Bao, W. Yang, B.H. Xie, M.B. Yang, Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion–CF2 dipole or negative ion–CH2 dipole interaction. J. Phys. Chem. B 118, 9104–9111 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Martins, A.C. Lopes, S.L. Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Sarkar, S. Garain, D. Mandal, K.K. Chattopadhyay, Electro-active phase formation in PVDF–BiVO4 flexible nanocomposite films for high energy density storage application. RSC Adv. 4, 48220–48227 (2014)CrossRefGoogle Scholar
  12. 12.
    I. Chinya, A. Pal, S. Sen, Polyglycolated zinc ferrite incorporated poly(vinylidene fluoride) (PVDF) composites with enhanced piezoelectric response. J. Alloys Compd. 722, 829–838 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 39, 164–198 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34, 727–733 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Gregorio, N.C.P.D.S. Nociti, Effect of PMMA addition on the solution crystallization of the α and β phases of poly(viny1idene fluoride) (PVDF). J. Phys. D 28, 432–436 (1995)CrossRefGoogle Scholar
  16. 16.
    V. Sencadas, R. Gregorio, S. L. Méndez, α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J. Macromol. Sci. Phys. 48, 514–525 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Matsushige, Pressure effect on phase transition in ferroelectic polymers. Phase Trans. 18, 247–262 (1989)CrossRefGoogle Scholar
  18. 18.
    K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001–033026 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Martins, C.M. Costa, G. Botelho, S.L. Mendez, J.M. Barandiaranc, J. Gutierrez, Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys. 131, 698–705 (2012)CrossRefGoogle Scholar
  20. 20.
    B. Adak, I. Chinya, S. Sen, Enhanced dielectric and energy storage performance of surface treated gallium ferrite/ polyvinylidene fluoride nanocomposites. RSC Adv. 6, 105137–105145 (2016)CrossRefGoogle Scholar
  21. 21.
    M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B.V. Horn, Z. Guan, G. Chen, R.S. Krishnan, General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Maharajan, M. Md. Mursalin, P. Narjinary, S. Rana, A. Sen, Sen, Synthesis, characterization and vapour sensing properties of nanosized ZnFe2O4. T. Indian Ceram. Soc. 73, 102–104 (2014)CrossRefGoogle Scholar
  23. 23.
    S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Jahan, F. Mighri, D. Rodrigue, A. Ajji, Enhanced electroactive bphase in three phase PVDF/CaCO3/nanoclaycomposites: effect of micro-CaCO3 and uniaxial stretching. J. Appl. Polym. Sci. 134, 44940–44950 (2017)CrossRefGoogle Scholar
  25. 25.
    P.K. Mahato, S. Sen, Effect of surface modification of ceramic particles by SDS on the electrical properties of PZT-PVDF and BT-PVDF composites: interface effect. J. Mater. Sci. 26, 2969–2976 (2015)Google Scholar
  26. 26.
    G. Suresh, G. Mallikarjunachari, S. Jatav, Ch Thirmal, M.S.R. Rao, D.K. Satapathy, Evolution of morphology, ferroelectric, and mechanical properties in poly(vinylidene fluoride)–poly(vinylidene fluoride-trifluoroethylene) blends. J. Appl. Polym. Sci. 135, 45955–45967 (2018)CrossRefGoogle Scholar
  27. 27.
    I. Chinya, S. Sen, Surface modified Zinc Ferrite (ZF) / Polyvinylidene fluoride (PVDF) nanocomposite: a novel material for application as a flexible energy harvester. Mater. Today 5, 10047–10053 (2018)CrossRefGoogle Scholar
  28. 28.
    B. Mahale, D. Bodas, S.A. Gangal, Study of β-phase development in spin-coated PVDF thick films. Bull. Mater. Sci. 40, 569–575 (2017)CrossRefGoogle Scholar
  29. 29.
    A.C. Lopes, S.A.C. Carabineiro, M.F.R. Pereira, G. Botelho, S. Lanceros-Mendez, Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. Chem. Phys. Chem. 14, 1926–1933 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Luo, D. Zhang, C. Jiang, X. Yuan, C. Chen, K. Zhou, Improved dielectric properties and energy storage density of Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl. Mater. Interfaces 7, 8061–8069 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Wang, W. Li, L. Luo, Z. Fang, J. Zhang, Y. Zhu, High dielectric constant and superparamagnetic polymer-based nanocomposites induced by percolation effect. J. Appl. Polym. Sci. 125, 2711–2715 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Ghosh, Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, 3rd edn. (McGraw-Hill Education, New York)Google Scholar
  34. 34.
    A.P. Venugopal, O. Cespedes, S.J. Russell, Controlling dielectric and magnetic properties of PVdF/magnetite nanocomposite fibre webs. Int. J. Polym.Sci. 2014, 102946–102954 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J. Mater. Chem. C 1, 2875–2885 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Martins, C. Caparros, R. Goncalves, P.M. Martins, M. Benelmekki, G. Botelho, S. Lanceros-Mendez, Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 116, 15790–15794 (2012)CrossRefGoogle Scholar
  37. 37.
    J.S. Andrew, D.R. Clarke, Enhanced ferroelectric phase content of polyvinylidene. Langmuir 24, 8435–8438 (2008)CrossRefGoogle Scholar
  38. 38.
    P. Martins, C.M. Costa, M. Benelmekki, G. Botelho, S.L. Mendez, On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. Cryst. Eng. Comm. 14, 2807–2811 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative ResearchChennaiIndia
  2. 2.Sensor and Actuator DivisionCSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations