Investigations on structural and spectral properties of undoped and Mn2+ doped SrZn2(PO4)2 nanophosphors for light emitting devices

  • V. Khidhirbrahmendra
  • Sk. Johny Basha
  • M. Avinash
  • U. S. Udayachandran Thampy
  • Ch. Venkata Reddy
  • R. V. S. S. N. RavikumarEmail author


SrZn2(PO4)2 (SZP) and Mn2+ doped SrZn2(PO4)2 (SZP: Mn) nanophosphors are prepared through solution combustion synthesis at a moderate temperature of 823 K. The nanophosphors are characterized by structural and spectral investigations systematically. X-ray diffraction (XRD) analysis confirms the monoclinic phase of SrZn2(PO4)2 with average crystallite size around 60–65 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the samples have shown irregular morphology. The fundamental vibrational modes of different phosphate groups are confirmed by Fourier transform infrared (FT-IR) spectroscopic analysis. Optical absorption spectrum exhibits Mn2+ characteristic bands are in visible region. Electron paramagnetic resonance (EPR) study describes octahedral environment of Mn2+ ions around the ligands in the host. Photoluminescence (PL) spectra show peaks in blue and yellow–orange region. Commission Internationale de l’Eclairage (CIE) and color correlation temperature (CCT) values indicate that SZP and SZP:Mn nanophosphors are potentially good for solid state lightening and white light emitting diodes (WLEDs).



This work was supported by UGC, New Delhi, India under the scheme of UGC-BSR Meritorious fellowship (No. F.25-1/2014-15(BSR)/7-2/2007(BSR), Dt: 05-10-2015). Authors are thankful to UGC-DRS and DST-FIST, New Delhi for financial assistance to the Dept. of Physics, Acharya Nagarjuna University. Authors would like to thank the Director, Centralized Laboratory, ANU and the Head, SAIF, IIT Madras for providing Ultracentrifuge and EPR facility respectively. Authors would also like to thank Head, Department of Physics, Kerala University for providing photoluminescence recordings.


  1. 1.
    J. Hou, W. Jiang, Y. Fang, F. Huang, J. Mater. Chem. C 1, 5892 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Cao, D. Peng, T. Fu, Z. Luo, S. Zhou, S. Jiang, J. Fu, J. Mater. Sci.: Mater. Electron. 27, 8094 (2016)Google Scholar
  3. 3.
    T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Nat. Mater. 6, 568 (2007)CrossRefGoogle Scholar
  4. 4.
    U. Caldiño, A. Lira, A.N. Meza-Rocha, I. Camarillo, R. Lozada-Morales, J. Lumin. 194, 231 (2018)CrossRefGoogle Scholar
  5. 5.
    V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Tang, H. Xia, P. Wang, J. Peng, Y. Zhang, H. Jiang, H. Chen, Mater. Lett. 104, 37 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Tian, Y. Wei, Y. Zhao, Z. Quan, G. Li, J. Lin, J. Mater. Chem. C 4, 1281 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Wang, W. Wang, Y. Jin, Ceram. Int. 42, 16626 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, G.-M. Cai, L.-W. Yang, Z.-Y. Ma, Z.-P. Jin, Inorg. Chem. 56, 12902 (2017)CrossRefGoogle Scholar
  10. 10.
    M.R. Yadav, B.J. Raja, M. Avinash, Ch.R. Krishna, R.V.S.S.N. Ravikumar, J. Mater. Sci.: Mater. Electron. 27, 1318 (2016)Google Scholar
  11. 11.
    R. Cao, Z. Shi, G. Quan, Z. Hu, G. Zheng, T. Chen, S. Guo, H. Ao, J. Lumin. 194, 542 (2018)CrossRefGoogle Scholar
  12. 12.
    L. Yi, L. Zhou, F. Gong, Y. Lan, Z. Tong, J. Sun, Mater. Sci. Eng. B 172, 132 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Li, Z. Wang, Z. Yang, Q. Guo, J. Solid State Chem. 220, 227 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Jeong, M. Jayasimhadri, H.S. Lee, K. Jang, S.S. Yi, J.H. Jeong, C. Kim, Physica B 404, 2016 (2009)CrossRefGoogle Scholar
  15. 15.
    W.-J. Yang, T.-M. Chen, Appl. Phys. Lett. 88, 101903 (2006)CrossRefGoogle Scholar
  16. 16.
    S.-H. Yang, C.-M. Lin, W.-M. Tung, W.-J. Wang, T.-C. Hung, J. Alloy Compd. 695, 2757 (2017)CrossRefGoogle Scholar
  17. 17.
    S.-H. Yang, C.-M. Lin, W.-M. Tung, T.-C. Hung, M.-W. Wang, J. Alloy Compd. 684, 461 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Long, Z. Luo, T. Wang, L. Pan, Q. Long, S. Liao, Y. Huang, H. Zhang, J. Mater. Sci.: Mater. Electron. 28, 657 (2017)Google Scholar
  19. 19.
    S. Saha, S. Das, D. Sen, U.K. Ghorai, N. Mazumder, B.K. Gupta, K.K. Chattopadhyay, J. Mater. Chem. C 3, 6786 (2015)CrossRefGoogle Scholar
  20. 20.
    M.R. Yadav, B.J. Raja, V.P. Manjari, M. Avinash, Ch.R. Krishna, R.V.S.S.N. Ravikumar, Indian J. Phys. 90, 185 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Xiao, F. Lei, L. Yin, Y. Shi, L. Zhang, Solid State Sci. 72, 116 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, A. Lan, Y. Jin, G. Chen, X. Zhang, Opt. Mater. 40, 122 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Yu, D. Wang, Ch Wu, Y. Wang, Mater. Res. Bull. 93, 83 (2017)CrossRefGoogle Scholar
  24. 24.
    V. Singh, G. Sivaramaiah, J.L. Rao, A.K. Srivastava, R.V.S.S.N. Ravikumar, S.J. Dhoble, P.K. Singh, M. Mohapatra, J. Electron. Mater. 45, 365 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Tian, Y. Fang, B. Tian, C. Cui, P. Huang, L. Wang, H. Jia, B. Chen, J. Mater. Sci. 50, 6060 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Dhiman, B.P. Singh, A.K. Gathania, J. Nanophotonics 6, 063511–063511 (2012)CrossRefGoogle Scholar
  27. 27.
    G.T. Rao, B. Babu, R.J. Stella, V.P. Manjari, Ch.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1081, 254 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Bindu, S. Thomas, J. Appl. Phys. 8, 123 (2014)Google Scholar
  29. 29.
    S. Thakur, A.K. Gathania, J. Electron. Mater. 44, 3444 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Sasikumar, R. Vijayaraghavan, J. Mater. Sci. Technol. 26, 1114 (2010)CrossRefGoogle Scholar
  31. 31.
    Z.-L. Ning, W.-J. Li, Ch-Y. Sun, P. Che, Z.-D. Chang, Trans. Nonferrous Met. Soc. China 23, 718 (2013)CrossRefGoogle Scholar
  32. 32.
    R.L. Kohale, S.J. Dhoble, J. Alloy Compd. 586, 314 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Ravindranadh, B. Babu, V.P. Manjari, G.T. Rao, M.C. Rao, R.V.S.S.N. Ravikumar, J. Lumin. 159, 119 (2015)CrossRefGoogle Scholar
  34. 34.
    V.P. Manjari, Ch.R. Krishna, Sk.M. Begum, R.V.S.S.N. Ravikumar, Eur. Phys. J. Appl. Phys. 65, 10403 (2014)CrossRefGoogle Scholar
  35. 35.
    Ch.J. Rhodes, Annu. Rep. Prog. Chem. Sect. C 107, 47 (2011)CrossRefGoogle Scholar
  36. 36.
    G.T. Rao, R.J. Stella, B. Babu, K. Ravindranadh, Ch.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, Mater. Sci. Eng. B 201, 72 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, J. Mater. Chem. A 2, 15377 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Gao, Y. Cheng, F. Huang, H. Lin, J. Xu, Y. Wang, J. Alloys Cmpds. 735, 1546 (2018)CrossRefGoogle Scholar
  39. 39.
    B.J. Raja, M.R. Yadav, V.P. Manjari, B. Babu, Ch.R. Krishna, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1076, 461 (2014)CrossRefGoogle Scholar
  40. 40.
    C.S. McCamy, Color Res. Appl. 17, 142 (1992)CrossRefGoogle Scholar
  41. 41.
    R. Boonsin, G. Chadeyron, J.P. Roblin, D. Boyer, R. Mahiou, J. Mater. Chem. C 4, 6562 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Liu, C. Huang, C. Yeh, Y. Chiu, Y. Yeh, R. Liu, RSC Adv. 3, 9023 (2013)CrossRefGoogle Scholar
  43. 43.
    W. Lü, Z. Zhang, X. Zhang, Y. Luo, C. Wang, J. Zhang, Inorg. Chem. 50, 7846 (2011)CrossRefGoogle Scholar
  44. 44.
    Z. Wang, S. Lou, P. Li, Z. Lian, Appl. Opt. 54, 1167 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. Khidhirbrahmendra
    • 1
  • Sk. Johny Basha
    • 1
  • M. Avinash
    • 1
  • U. S. Udayachandran Thampy
    • 2
  • Ch. Venkata Reddy
    • 3
  • R. V. S. S. N. Ravikumar
    • 1
    Email author
  1. 1.Department of PhysicsAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of PhysicsUniversity of KeralaThiruvananthapuramIndia
  3. 3.School of Mechanical EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations