Advertisement

Enhanced energy storage activity of NiMoO4 modified by graphitic carbon nitride

  • Xiaoyang Xu
  • Qianqian Liu
  • Ting Wei
  • Ying Zhao
  • Xiangjing ZhangEmail author
Article
  • 7 Downloads

Abstract

The NiMoO4 sheets were grown on graphitic carbon nitride (g-C3N4) using a very simple chemical precipitation method. The prepared g-C3N4/NiMoO4 can be used as the electrode material of supercapacitors and exhibit a high specific capacitance of 1275 F g−1 at 0.25 A g−1 owing to the interconnected structure and presence of N by the incorporation of g-C3N4. In addition, the g-C3N4/NiMoO4//rGO hybrid supercapacitor was assembled by employing g-C3N4/NiMoO4 and rGO as positive and negative electrode respectively. The assembled hybrid device can exhibit good electrochemical performances, such as the specific capacitance of 146 F g−1, energy density of 90 Wh kg−1 and accepted cycle stability with 70% capacitance retention after 4000 continuous cycles. These results powerfully demonstrate that the prepared g-C3N4/NiMoO4 can be applied as a potential candidate in the electrode material of supercapacitors.

Notes

Acknowledgements

This work was financially supported by the Basic Research Programs of HeBei province (Grant No. 18964401D).

References

  1. 1.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Hossain, P. Bandyopadhyay, P.S. Guin, S. Roy, Recent developed different structural nanomaterials and their performance for supercapacitor application. Appl. Mater. Today 9, 300 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  4. 4.
    G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Li, K.H. Seng, Z.X. Chen, H.K. Liu, I.P. Nevirkovets, Z.P. Guo, Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim. Acta 87, 801 (2013)CrossRefGoogle Scholar
  6. 6.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Nandhini, P.A. Mini, B. Avinash, S.V. Nair, K.R.V. Subramanian, Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Mater. Lett. 87, 165 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, H. Pang, J. Guo, W. Wang, Z. Yan, L. Ma, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, Hydrated cobalt nickel molybdate nanorods as effectively supercapacitor electrode materials. Int. J. Electrochem. Sci. 8, 2945 (2013)Google Scholar
  9. 9.
    D. Guo, Y.Z. Luo, X.Z. Yu, Q.H. Li, T.H. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174 (2014)CrossRefGoogle Scholar
  10. 10.
    Z.X. Yin, S. Zhang, Y.J. Chen, P. Gao, C.L. Zhu, P.P. Yang, L.H. Qi, Hierarchical nanosheet based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater. Chem. A 3, 739 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Xiao, L. Xia, G. Liu, S. Wang, L.X. Ding, H. Wang, Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater. Chem. A 3, 6128 (2015)CrossRefGoogle Scholar
  12. 12.
    M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 94, 197 (2013)CrossRefGoogle Scholar
  13. 13.
    L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2, 381 (2011)CrossRefGoogle Scholar
  14. 14.
    H.Z. Wan, J.J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H.C. Chen, Y.J. Ruan, Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters or supercapacitors. Mater. Lett. 108, 164 (2013)CrossRefGoogle Scholar
  15. 15.
    Z. Zhang, Y.D. Liu, Z.Y. Huang, L. Ren, X. Qi, X.L. Wei, J.X. Zhong, Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys. Chem. 17, 20795 (2015)Google Scholar
  16. 16.
    W. Hong, J.Q. Wang, P.W. Gong, J.F. Sun, L.Y. Niu, Z.G. Yang, Z.F. Wang, S.R. Yang, Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application. J Power Sources 270, 516 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu, Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J Mater. Chem. A 3, 13691 (2015)CrossRefGoogle Scholar
  18. 18.
    P.R. Jothi, S. Kannan, G. Velayutham, Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. J Power. Sources 277, 350 (2015)CrossRefGoogle Scholar
  19. 19.
    X.Z. Liu, K. Zhang, B.L. Yang, W.L. Song, Q. Liu, F. Jia, S.Y. Qin, W.J. Chen, Z.X. Zhang, J. Li, Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Mater. Lett. 164, 401 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sust. Energ. Rev. 82, 1297 (2018)CrossRefGoogle Scholar
  21. 21.
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 1 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Hang, C.F. Zhang, X.M. Luo, Y.S. Xie, S. Xin, Y.T. Li, D.W. Zhang, J.B. Goodenough, α–MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J Power Sources 392, 15 (2018)CrossRefGoogle Scholar
  23. 23.
    B. Guan, Q.Y. Shan, H. Chen, D.F. Xue, K.F. Chen, Y.X. Zhang, Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim. Acta 200, 239 (2016)CrossRefGoogle Scholar
  24. 24.
    X.D. Li, Y. Feng, M.C. Li, W. Li, H. Wei, D.D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 25, 6858 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.R. Li, K.X. Sheng, W.J. Yuan, G.Q. Shi, A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 49, 291 (2013)CrossRefGoogle Scholar
  26. 26.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  27. 27.
    Z.Q. Zhang, F.X. Bao, Y.N. Zhang, L.K. Feng, Y. Ji, H.D. Zhang, Q.S. Sun, S.H. Feng, X.D. Zhao, X.L. Liu, Formation of hierarchical CoMoO4@MnO2 core-shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. J. Power Sources 296, 162 (2015)CrossRefGoogle Scholar
  28. 28.
    X.Y. Xu, X.J. Zhang, Y. Zhao, Y.Q. Hu, An efcient hybrid supercapacitor based on battery-type MnS/reduced graphene oxide and capacitor-type biomass derived activated carbon. J. Mater. Sci. Mater. Electron. 29, 8410 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Jiao, J. Pei, C.S. Yan, D.H. Chen, Y.Y. Hu, G. Chen, Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater. Chem. A 4, 13344 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Shi, M.A. Gondal, S.G. Rashid, Q. Qi, A.A. Al-Saadi, Z.H. Yamani, Y.H. Sui, Q.Y. Xu, K. Shen, Synthesis of g-C3N4/BiOClxBr1–x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloid Sur. A 461, 202 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Xu, G.X. Wang, J.J. Fan, B.S. Liu, S.W. Cao, J.G. Yu, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources 274, 77 (2015)CrossRefGoogle Scholar
  32. 32.
    T.Y. Jeon, S.K. Kim, N. Pinna, A. Sharma, J. Park, S.Y. Lee, H.C. Lee, S.W. Kang, H.K. Lee, H.H. Lee, Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction. Chem. Mater. 28, 1879 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Dai, L.H. Lu, C.H. Liang, Q. Liu, G.P. Zhu, Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl. Catal. B-Environ. 156, 331 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloy. Compd. 422, 53 (2006)CrossRefGoogle Scholar
  35. 35.
    K. Seevakana, A. Manikandanb, P. Devendranc, A. Shameemc, T. Alagesan, Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879 (2018)CrossRefGoogle Scholar
  36. 36.
    T. Werninghaus, D.R.T. Zahn, E.G. Wang, Y. Chen, Micro-Raman spectroscopy investigation of C3N4 crystals deposited on nickel substrates. Diam. Relat. Mater. 7, 52 (1998)CrossRefGoogle Scholar
  37. 37.
    F.L. Freire Jr., M.M. Lacerda, G. Mariotto, Raman spectroscopy of annealed carbon nitride films deposited by RF-magnetron sputtering. Diam. Relat. Mater. 7, 412 (1998)CrossRefGoogle Scholar
  38. 38.
    M. Tahir, C.B. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6, 1258 (2014)CrossRefGoogle Scholar
  39. 39.
    X.Y. Xu, H.L. Zhao, J.K. Zhou, R.N. Xue, J.P. Gao, NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. J. Power Sources 329, 238 (2016)CrossRefGoogle Scholar
  40. 40.
    X.Y. Xu, F.L. Xia, L. Zhang, J.P. Gao, Hydrothermal preparation of MnMoO4/reduced graphene oxide hybrid and its application in energy storage. Sci. Adv. Mater. 7, 423 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Ajay, A. Paravannoor, J. Joseph, V. Amruthalakshmi, S.S. Anoop, S.V. Nair, A. Balakrishnan, 2D amorphous frameworks of NiMoO4 for supercapacitors: definingthe role of surface and bulk controlled diffusion processes. Appl. Surf. Sci. 326, 39 (2015)CrossRefGoogle Scholar
  42. 42.
    C.S. Wang, Y. Xi, C.G. Hu, S.G. Dai, M.J. Wang, L. Cheng, W.N. Xu, G. Wang, W.L. Li, β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitor. RSC Adv. 5, 107098 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, L. Xu, S.Q. Huang, J. Bao, J.X. Qiu, J.B. Lian, L. Xu, Y.P. Huang, Y.G. Xu, H.M. Li, Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloy. Compd. 702, 178 (2017)CrossRefGoogle Scholar
  44. 44.
    Y. Ma, C. Ma, J. Sheng, H.X. Zhang, R.R. Wang, Z.Y. Xie, J.L. Shi, Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors. J Colloid Interf. Sci. 461, 96 (2016)CrossRefGoogle Scholar
  45. 45.
    C. Guan, J.P. Liu, C.W. Cheng, H.X. Li, X.L. Li, W.W. Zhou, H. Zhang, H.J. Fan, Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4, 4496 (2011)CrossRefGoogle Scholar
  46. 46.
    B. Senthilkumar, D. Meyrick, Y.S. Lee, R.K. Selvan, Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors. RSC Adv. 3, 16542 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Vikrant, G. Shubhra, S.R. Kishore, S. Gurmeet, Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage. Nanoscale 7, 20642 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Eletrochim. Acta 189, 283 (2016)CrossRefGoogle Scholar
  49. 49.
    X.Y. Xu, Y.H. Song, R.N. Xue, J.K. Zhou, J.P. Gao, F.B. Xing, Amorphous CoMoS4 for a valuable energy storage material candidate. Chem. Eng. J. 301, 266 (2016)CrossRefGoogle Scholar
  50. 50.
    C. Qing, Y.N. Liu, X.D. Sun, X.X. O.Y, H. Wang, D.M. Sun, B.X. Wang, Q. Zhou, L.F. Xu, Y.W. Tang, Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitor. RSC Adv. 6, 67785 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyang Xu
    • 1
    • 2
  • Qianqian Liu
    • 1
    • 2
  • Ting Wei
    • 1
    • 2
  • Ying Zhao
    • 1
    • 2
  • Xiangjing Zhang
    • 1
    • 2
    Email author
  1. 1.School of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China
  2. 2.Hebei Research Center of Pharmaceutical and Chemical EngineeringShijiazhuangPeople’s Republic of China

Personalised recommendations