Limited volume heating method: a simple low cost approach to synthesize additive free long nanowires

  • S. P. Ghosh
  • B. Das
  • K. C. Das
  • N. Tripathy
  • G. Bose
  • T. I. Lee
  • J. M. Myoung
  • J. P. KarEmail author


A new type of limited volume heating system (LVH) is designed for the enhancement of the efficiency of conventional hydrothermal method to obtain additive free long nanowires (NWs). In LVH system, the period of chemical reaction is enhanced due to the supply of fresh chemicals by the convection of precursors between different temperature zones. In this work, the performance of the LVH system is investigated by synthesizing an array of long zinc oxide (ZnO) NWs as a case study. Morphological characterizations revealed the formation of long NWs of different dimension with growth temperatures, precursor concentrations and growth durations. The length of the NWs is greatly influenced by the variation in growth time and temperature, whereas their diameter was controlled by changing precursor concentration. The growth of NWs is along (002) direction as revealed by X-ray diffraction and transmission electron microscopy studies. In this technique, the length of the NWs is increased upto five times in comparison to those grown by conventional global heating (CGH) method and thereby proving an enhanced performance of LVH system without any additives. Further, photoresponse behavior of the LVH grown long ZnO NWs is evaluated for ultraviolet detection, where photoresponse of 1.7 s and recovery time of 0.8 s is observed.



This work was supported by the Department of Science and Technology (DST), India sponsored Indo-Korea project (INT/Korea/P-16/2013). This research was also supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant number: 2012K1A3A1A19038371).


  1. 1.
    C.G. Nunez, IEEE Sens. J. 18 7779–7785 (2018)Google Scholar
  2. 2.
    S. Steinhauer, A. Chapelle, P. Menini, M. Sowwan, ACS Sens. 1 503–507 (2016)Google Scholar
  3. 3.
    H. Tateyama, Q. Zhang, Y. Ichikawa, AIP Conference Proceedings, 1963 020013 (2018)Google Scholar
  4. 4.
    T. Demes et al., J. Mater. Sci. 51 10652–10661 (2016)Google Scholar
  5. 5.
    S.-M. Lam, J.-C. Sin, JOJ Mater. Sci. 4(1) 555629 (2018)Google Scholar
  6. 6.
    A. Pescaglini et al., Phys. Chem.Chem.Phys. 19, 14042 (2017)Google Scholar
  7. 7.
    S. Noothongkaew, O. Thumthan, Int. J. Electron. Electr. Eng. 6, 1 (2018)Google Scholar
  8. 8.
    H. Chang, D.H. Lee, H.S. Kim, J. Park, B.Y. Lee, Nanoscale Res. Lett. 13, 413 (2018)Google Scholar
  9. 9.
    C.Y. Jin, Z. Li, R.S. Williams, K.C. Lee, I. Park, Nano Lett. 11, 4818–4825 (2011)Google Scholar
  10. 10.
    J.J. Cheng, S.M. Nicaise, K.K. Berggren, S. Gradecak, Nano Lett. 16 753–759 (2016)Google Scholar
  11. 11.
    F. Bourfaa et al., Int. J. Health Serv. Res. Policy 3 33–39 (2018)Google Scholar
  12. 12.
    S. Xu, C. Lao, B. Weintraub, Z.L. Wang, J. Mater. Res. 322 238 (2008)Google Scholar
  13. 13.
    D. Zhang, S. Wang, K. Cheng, S. Dai, B. Hu, X. Han, Q. Shi, Z. Du, ACS Appl. Mater. Interfaces 4, 2969–2977 (2012)Google Scholar
  14. 14.
    C. Chevalier-César, M. Capochichi-Gnambodoe, Y. Leprince-Wang, Appl. Phys. A 115, 953–960 (2014)Google Scholar
  15. 15.
    L.-Y. Chen, Y.-T. Yin, C.-H. Chen, J.-W. Chiou, J. Phys. Chem. C 115, 20913–20919 (2011)Google Scholar
  16. 16.
    L.-Y. Chen, Y.-T. Yin, Cryst. Growth Des. 12 1055–1059 (2012)Google Scholar
  17. 17.
    M. Ladanov, P. Algarin-Amaris, G. Matthews, M. Ram, S. Thomas, A. Kumar, J. Wang, Nanotechnology 24, 375301 (2013)Google Scholar
  18. 18.
    R.A. Wahyuono, C. Schmidt, A. Dellith, J. Dellith, M. Schulz, M. Seyring, M. Rettenmayr, J. Plentz, B. Dietzek, Open Chem. 14, 158–169 (2016)Google Scholar
  19. 19.
    D.C. Kim, B. Jung, J.H. Lee, H.K. Cho, J.Y. Lee, J. H. Lee, Nanotechnology 22, 26 (2011)Google Scholar
  20. 20.
    L. Hu, L. Zhu, H. He, Y. Guo, G. Pan, J. Jiang, Y. Jin, L. Sun, Z. Ye, Nanoscale 5, 9577–9581 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. P. Ghosh
    • 1
  • B. Das
    • 1
  • K. C. Das
    • 1
  • N. Tripathy
    • 1
  • G. Bose
    • 2
  • T. I. Lee
    • 3
  • J. M. Myoung
    • 4
  • J. P. Kar
    • 1
    Email author
  1. 1.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia
  2. 2.FST, IFHE UniversityHyderabadIndia
  3. 3.Department of Bio-NanotechnologyGachon UniversitySeongnam-daeroRepublic of Korea
  4. 4.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations