Outstanding performances of Ni2CoS4/expanded graphite with ultrafine Ni2CoS4 particles for supercapacitor applications
- 5 Downloads
Abstract
Nickel sulfides are desirable electrode materials for supercapacitors, while low electronic conductivity and poor cyclic stability restrict their wide applications. Herein, Ni2CoS4/expanded graphite (Ni2CoS4/EG) composite was prepared in mixed solvents of ethylene glycol and H2O via a rapid and energy-saving microwave heating method. Scanning transmission electron microscopy image shows that Ni2CoS4 particles are ultrafine with an average diameter of 2 nm and uniformly distributed on expanded graphite. The specific capacitance of the Ni2CoS4/EG composite can reach up to 2056.8 F g−1 at 5 A g−1 as compared to 1574.4 F g−1 of Ni3S4, 229.1 F g−1 of CoS and 1516.6 F g−1 of Ni2CoS4; and even at higher current density of 30 A g−1, the specific capacitance can still demonstrates 1923.3 F g−1, thus 92.5% of rate capability can be achieved as the current density increases from 5 to 30 A g−1. Moreover, it exhibits an excellent stability of 94.4% after cycling at current density of 30 A g−1 for 2000 cycles. The composite delivers high initial capacitance, excellent rate capability, and fantastic stability. Furthermore, the fabricated AC//Ni2CoS4/EG asymmetric supercapacitor also exhibits a high specific capacitance of 120.3 F g−1 at 0.5 A g−1, an superior cycle life (91% at 5 A g−1 for 5000 cycles), and an extremely high energy density of 52 Wh kg−1 at 477 W kg−1. This work offers a new insight to synthesize ultrafine bimetallic sulfides, and the superior high performances of the Ni2CoS4/EG composite can provide practical applications in supercapacitors.
Notes
Acknowledgements
This work was supported by the Open Project of Fuel Cells & Hybrid Electric Power Key Lab, Chinese Academy of Sciences (KLFC201702), the Open Project from State Key Lab of Catalysis (N-14-1), and the Innovative Research Team of Southwest Petroleum University (2015CXTD04).
Supplementary material
References
- 1.Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)CrossRefGoogle Scholar
- 2.Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRefGoogle Scholar
- 3.A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016)CrossRefGoogle Scholar
- 4.J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry 14, 6614–6626 (2008)CrossRefGoogle Scholar
- 5.L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
- 6.A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sour. 157, 11–27 (2006)CrossRefGoogle Scholar
- 7.O.B.M. Hahn, F.P. Campana, R. Kötz, R. Gallay, Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl. Phys. A 82, 633–638 (2006)CrossRefGoogle Scholar
- 8.X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)CrossRefGoogle Scholar
- 9.C. Wang, Z. Guan, Y. Shen, S. Yu, X.-Z. Fu, R. Sun, C.-P. Wong, Shape-controlled synthesis of CoMoO4@Co1.5Ni1.5S4 hybrids with rambutan-like structure for high-performance all-solid-state supercapacitors. Chem. Eng. J. 346, 193–202 (2018)CrossRefGoogle Scholar
- 10.M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo, W. Ding, Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11, 216–224 (2017)CrossRefGoogle Scholar
- 11.P. Guo, H. Song, Y. Liu, C. Wang, FeNi2S4 QDs@C composites as a high capacity and long life anode material for lithium ion battery and ex situ investigation of electrochemical mechanism. Electrochim. Acta 258, 1173–1181 (2017)CrossRefGoogle Scholar
- 12.C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.-Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv. Func. Mater. 27, 1702524 (2017)CrossRefGoogle Scholar
- 13.X. Zheng, Z. Han, W. Yang, F. Qu, B. Liu, X. Wu, 3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Trans. 45, 16850–16858 (2016)CrossRefGoogle Scholar
- 14.W.Z.L. Zhang, H. Jiu, C. Ni, J. Chang, G. Qi, The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochim. Acta 215, 212–222 (2016)CrossRefGoogle Scholar
- 15.J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4/Fe–carbon nanocomposites with Fe–carbon double conductive network as supercapacitor. Electrochim. Acta 215, 483–491 (2016)CrossRefGoogle Scholar
- 16.M. Li, M.F. El-Kady, J.Y. Hwang, M.D. Kowal, K. Marsh, H. Wang, Z. Zhao, R.B. Kaner, Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 11, 2836–2846 (2018)CrossRefGoogle Scholar
- 17.L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)CrossRefGoogle Scholar
- 18.M. Li, K.Y. Ma, J.P. Cheng, D. Lv, X.B. Zhang, Nickel–cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sourc. 286, 438–444 (2015)CrossRefGoogle Scholar
- 19.F. Lai, Y. Huang, Y.-E. Miao, T. Liu, Controllable preparation of multi-dimensional hybrid materials of nickel–cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim. Acta 174, 456–463 (2015)CrossRefGoogle Scholar
- 20.R. Qu, S. Tang, X. Qin, J. Yuan, Y. Deng, L. Wu, J. Li, Z. Wei, Expanded graphite supported Ni(OH)2 composites for high performance supercapacitors. J. Alloy. Compd. 728, 222–230 (2017)CrossRefGoogle Scholar
- 21.R. Qu, Z. Dai, ShuihuaTang,Z. Zhu, G.M. Haarberg, Facile preparation of layered Ni(OH)2/graphene composite from expanded graphite. Int. J. Electrochem. Sci. 12, 8833–8846 (2017)CrossRefGoogle Scholar
- 22.Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)CrossRefGoogle Scholar
- 23.P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem. 56, 7141–7145 (2017)CrossRefGoogle Scholar
- 24.J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy 45, 439–447 (2018)CrossRefGoogle Scholar
- 25.C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, W. Huang, Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv. Sci. 5, 1700375 (2018)CrossRefGoogle Scholar
- 26.X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, One-step synthesis of NiCo2S4/graphene composite for asymmetric supercapacitors with superior performances. Chemelectrochem 5, 1576–1585 (2018)CrossRefGoogle Scholar
- 27.Z.C. Yan, T. Wang, Y. Lei, Z. Ai, X. Peng, H. Yan, Z.M.W. Li, Y.-L. Jijun Zhang, Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018)CrossRefGoogle Scholar
- 28.T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, R. Sun, C.-P. Wong, Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J. Mater. Chem. A 3, 23035–23041 (2015)CrossRefGoogle Scholar
- 29.F. Zhao, W. Huang, H. Zhang, D. Zhou, Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 426, 1206–1212 (2017)CrossRefGoogle Scholar
- 30.L.S. Shuihua Tang, Z. Dai, Z. Zhu, H. Huangfu, High supercapacitive performance of Ni(OH)2/XC-72 composite prepared by microwave-assisted method. RSC Adv. 5, 43164–43171 (2015)CrossRefGoogle Scholar
- 31.J. Li, M. Wei, W. Chu, N. Wang, High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 316, 277–287 (2017)CrossRefGoogle Scholar
- 32.S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)CrossRefGoogle Scholar
- 33.X. Qin, S. Tang, J. Yuan, Y. Deng, R. Qu, L. Wu, J. Li, Enhanced performances of functionalized XC-72 supported Ni(OH)2 composites for supercapacitors. New J. Chem. 41, 11372–11382 (2017)CrossRefGoogle Scholar
- 34.B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 241, 1–9 (2017)CrossRefGoogle Scholar
- 35.C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)CrossRefGoogle Scholar
- 36.P. Guo, H. Song, Y. Liu, C. Wang, CuFeS2 quantum dots anchored in carbon frame: superior lithium storage performance and the study of electrochemical mechanism. ACS Appl. Mater. Interfaces 9, 31752–31762 (2017)CrossRefGoogle Scholar
- 37.X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 18774–18781 (2017)CrossRefGoogle Scholar
- 38.J. Yang, C. Yu, C. Hu, M. Wang, S. Li, H. Huang, K. Bustillo, X. Han, C. Zhao, W. Guo, Z. Zeng, H. Zheng, J. Qiu, Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Func. Mater. 28, 1803272 (2018)CrossRefGoogle Scholar
- 39.M.L. Jun, Y. Liang, M. Chai, L. Luo, Li, TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J. Power Sourc. 362, 123–130 (2017)CrossRefGoogle Scholar
- 40.L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018)CrossRefGoogle Scholar
- 41.K. Tao, X. Han, Q. Ma, L. Han, A metal-organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018)CrossRefGoogle Scholar
- 42.C.T. Chiu, D.H. Chen, One-step hydrothermal synthesis of three-dimensional porous Ni–Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnol. 29, 175602 (2018)CrossRefGoogle Scholar
- 43.Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10, 4051–4060 (2018)CrossRefGoogle Scholar
- 44.R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, X. He, Y. Wang, Z. Xu, A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597–606 (2017)CrossRefGoogle Scholar
- 45.L. Jin, B. Liu, Y. Wu, S. Thanneeru, J. He, Synthesis of mesoporous CoS2 and NixCo1–xS2 with superior supercapacitive performance using a facile solid-phase sulfurization. ACS Appl. Mater. Interfaces 9, 36837–36848 (2017)CrossRefGoogle Scholar
- 46.B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017)CrossRefGoogle Scholar
- 47.C. Lamiel, V.H. Nguyen, M. Baynosa, D.C. Huynh, J.-J. Shim, Hierarchical mesoporous carbon sphere@nickel cobalt sulfide core–shell structures and their electrochemical performance. J. Electroanal. Chem. 771, 106–113 (2016)CrossRefGoogle Scholar
- 48.G.C. Lau, N.A. Sather, H. Sai, E.M. Waring, E. Deiss-Yehiely, L. Barreda, E.A. Beeman, L.C. Palmer, S.I. Stupp, Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Adv. Func. Mater. 28, 1702320 (2018)CrossRefGoogle Scholar
- 49.X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017)CrossRefGoogle Scholar
- 50.S.T. Leping Sui, Y. Chen, Z. Dai, H. Huangfu, X.Q. Zhentao Zhu, Y. Deng, Geir Martin Haarberg, an asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and AC. Electrochim. Acta 182, 1159–1165 (2015)CrossRefGoogle Scholar
- 51.S.T. Leping Sui, Z. Dai, Z. Zhu, H. Huangfu, Q. Xiaolong, Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH)2/XC-72 composite. New J. Chem. 39, 9363–9371 (2015)CrossRefGoogle Scholar
- 52.S.G. Mohamed, I. Hussain, J.J. Shim, One-step synthesis of hollow C–NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10, 6620–6628 (2018)CrossRefGoogle Scholar
- 53.Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, J. Yao, Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301–311 (2018)CrossRefGoogle Scholar