Advertisement

Synthesis and functionalization of graphite oxide: structural, morphological and thermal properties for hydrogen storage

  • Afef BenghniaEmail author
  • Jose Ramón Ares
  • Fabrice Leardini
  • Romdhane Ben Slama
  • Brahim Ayed
  • Bechir Chaouachi
Article

Abstract

This study reports the functionalization of graphite oxide (GO) surface using 1,4-diaminobutane (DAB) grafting followed by incorporation of palladium (Pd-NPs) as metallic nanoparticles. The resulting materials GO-DAB was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray-fluorescence, thermogravimetric analysis and X-ray diffraction. It was found that DAB was successfully grafted on the interface sheets of GO. The incorporation of Pd-NPs was immobilized at the edge of the DAB amine. It was found that modified GO produce a slight structure compaction, due to the electrostatic interaction between metal and amine (Pd:NH2). The new functional material was employed for H2 adsorption and the results indicated a visible improvement of the H2 capacity retention. These increases are due to the chemical addition of both DAB and Pd-NPs. In addition, hydrogen retention appears to involve mainly chemical interactions and the results showed that the obtained materials had good affinity towards hydrogen. Even with compact structures, hydrogen was found to adsorb almost instantly at ambient temperature and pressure, which explained by the diffusion hindrance. The above results open new prospects to produces novel materials for hydrogen storage.

References

  1. 1.
    N. Bouazizi, T. Boudharaa, R. Bargougui, J. Vieillard, S. Ammar, F. Le Derf, A. Azzouz, Synthesis and properties of ZnO-HMD@ ZnO-Fe/Cu core-shell as advanced material for hydrogen storage. J. Colloid Interface Sci. 491, 89–97 (2017)CrossRefGoogle Scholar
  2. 2.
    R.K. Ahluwalia, T.Q. Hua, J.K. Peng, S. Lasher, K. McKenney, J. Sinha et al., Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 35, 4171–4184 (2010)CrossRefGoogle Scholar
  3. 3.
    N. Bouazizi, S. Louhichi, R. Ouargli, R. Bargougui, J. Vieillard, F. Le Derf, A. Azzouz, Cu0-loaded SBA-15@ ZnO with improved electrical properties and affinity towards hydrogen. Appl. Surf. Sci. 404, 146–153 (2017)CrossRefGoogle Scholar
  4. 4.
    N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, T.C. Shiao, R. Roy, A. Azzouz, Metal-loaded polyol-montmorillonite with improved affinity towards hydrogen. J. Energy Inst. 91, 110–119 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, … A. Azzouz, Synthesis and characterization of SnO2-HMD-Fe materials with improved electric properties and affinity towards hydrogen. Ceram. Int. 42(8), 9413–9418 (2016)CrossRefGoogle Scholar
  6. 6.
    N. Bouazizi, R. Ouargli, S. Nousir, R.B. Slama, A. Azzouz, Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. J. Phys. Chem. Solids 77, 172–177 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Somayazulu, P. Dera, A.F. Goncharov, S.A. Gramsch, P. Liermann, W. Yang, Z. Liu, HK Mao, RJ Hemley. Nature Chem 2(1), 50 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Ouargli-Saker, N. Bouazizi, B. Boukoussa, D. Barrimo, A. Azzouz, Metal-loaded SBA-16-like silica–Correlation between basicity and affinity towards hydrogen. Appl. Surf. Sci. 411, 476–486 (2017)CrossRefGoogle Scholar
  9. 9.
    A.F. Dalebrook, W. Gan, M. Grasemann, S. Moret, G. Laurenczy, Chem. Commun. 49(78), 8735 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Jia, C. Sun, S. Shen, J. Zou, S.S. Mao, X. Yao, Renew. Sustain. Energy Rev. 44, 289 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Spyrou, D. Gournis, P. Rudolf, ECS J. Solid State Sci. Technol. 2(10), M3160 (2013)CrossRefGoogle Scholar
  12. 12.
    H.G. Shiraz, F.R. Astaraei, S. Fardindoost, Z.S. Hosseini, RSC Adv. 6, 44410 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Niaz, T. Manzoor, A.H. Pandith, Renew. Sustain. Energy Rev. 50, 457 (2015)CrossRefGoogle Scholar
  14. 14.
    H.-S. Kim, H. Lee, K.-S. Han, J.-H. Kim, M.-S. Song, M.-S. Park, J.-Y. Lee, J.-K. Kang, J. Phys. Chem. B 109(18), 8983 (2005)CrossRefGoogle Scholar
  15. 15.
    H.G. Shiraz, R. Seyfollahi, Vacuum 131, 115 (2016)CrossRefGoogle Scholar
  16. 16.
    A.A. Nair, R. Sundara, N. Anitha, Int. J. Hydrog. Energy 40, 3259 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, Z. Zhang, F. Zhang, W. Yang, Appl. Surf. Sci. 386, 247 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Xing, Y. Li, H. Yu, Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction. Chem. Commun. 52, 390–393 (2016)CrossRefGoogle Scholar
  19. 19.
    J.F. Rubilar et al., Effect of nanoclay and ethyl-Nα-dodecanoyl-l-arginate hydrochloride (LAE) on physico-mechanical properties of chitosan films. LWT Food Sci. Technol. 72, 206–214 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Shahidi, J.K.V. Arachchi, Y.-J. Jeon, Food applications of chitin and chitosans. Trends Food Sci. Technol. 10(2), 37–51 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Panigrahi et al., Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 111(12), 4596–4605 (2007)CrossRefGoogle Scholar
  22. 22.
    M.S. Jeletic, M.T. Mock, A.M. Appel, J.C. Linehan, A cobalt-Based catalyst for the hydrogenation of CO2 under ambient conditions. J. Am. Chem. Soc. 135, 11533–11536 (2013)CrossRefGoogle Scholar
  23. 23.
    N. Bouazizi, D. Barrimo, S. Nousir, R. Ben Slama, R. Roy, A. Azzouz, Ontmorillonite-supported Pd0, Fe0, Cu0 and Ag0 nanoparticles: properties and affinity towards CO2. Appl. Surf. Sci. 402, 314–322 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Azzouz, S. Nousir, N. Bouazizi, R. Roy, Metal–inorganic–organic matrices as efficient sorbents for hydrogen storage 8, 800 (2015)Google Scholar
  25. 25.
    N.A. Travlou, G.Z. Kyzas, N.K. Lazaridis, E.A. Deliyanni, Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29, 1657 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Chen, J. Zhang, B. Zhang, H.Ming Duan, Hydrogen adsorption of Mg-doped graphene oxide: a first-principles study. J. Phys. Chem. C 117, 4337 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R. Ben Slama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, Metal-organo-zinc oxide materials: Investigation on the structural, optical and electrical properties. J. Alloy. Compd. 656, 146 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Afef Benghnia
    • 1
    Email author
  • Jose Ramón Ares
    • 2
  • Fabrice Leardini
    • 2
  • Romdhane Ben Slama
    • 1
  • Brahim Ayed
    • 3
    • 4
  • Bechir Chaouachi
    • 1
  1. 1.Environment, Catalysis and Analysis Methods LaboratoryENIG University of GabesZrig EddakhlaniaTunisia
  2. 2.Grupo MIRE, Dpto. Física de MaterialesUniversidad Autónoma de MadridMadridSpain
  3. 3.Laboratoire des Matériaux, Cristallochimie et Thermodynamique, Faculté des sciences de MonastirUniversité MonastirMonastirTunisia
  4. 4.Laboratoire des Matériaux, Cristallochimie et Thermodynamique, Faculté des sciences de TunisUniversité El-ManarTunisTunisia

Personalised recommendations