An investigation on physical properties of Ag2BiI5 absorber layers synthesized by microwave assisted spin coating technique

  • S. S. Hosseini
  • M. AdelifardEmail author
  • M. Ataei


Silver bismuth iodide perovskites are good substitutes instead of lead-based perovskites because they are nontoxic and stable in air. In this study, Ag–Bi–I thin films with various ratios of Ag/Bi = 3, 2, 1, 0.5 were prepared by spin coating of AgI and BiI3 dissolved in dimethylsulfoxide. In this research, Microwave was used for heat treatment of perovskite films in the air. The morphology, structure, stability and composition of the studied layers have been studied by X-ray diffraction (XRD), energy-dispersive X-ray analysis, and field emission scanning electron microscope (FESEM). Also, the correlation between the optical data, and the silver concentration of thin films was established. Structural characterizations showed the hexagonal phase of Ag2BiI5 for all samples. The magnified FESEM images show that after heat treatment by microwave, all films had a dense surface with the spherical structures and the average diameter smaller than 50 nm. Also these samples had various band gap energies between 1.38 and 1.6 eV After heat treatment in air and after 30 days in ambient condition under relative humidity of 50%, XRD patterns and band gap energies was not changed so these samples showed excellent long-time stability. These two characteristics make these materials especially suited for solar cells.


  1. 1.
    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.I. Seok, Science 356(6345), 1376–1379 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, JACS 131(17), 6050–6051 (2009)CrossRefGoogle Scholar
  3. 3.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 1228604 (2012)Google Scholar
  4. 4.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499(7458), 316 (2013)CrossRefGoogle Scholar
  5. 5.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348(6240), 1234–1237 (2015)CrossRefGoogle Scholar
  6. 6.
    T.N. Peiris, A.K. Baranwal, H. Kanda, S. Fukumoto, S. Kanaya, L. Cojocaru, S. Ito, Nanoscale 9(17), 5475–5482 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Ito, G. Mizuta, S. Kanaya, H. Kanda, T. Nishina, S. Nakashima, H. Nishino, Phys. Chem. Chem. Phys. 18(39), 27102–27108 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Bae, S. Kim, S.W. Lee, K.J. Cho, S. Park, S. Lee, D. Kim, J. Phys. Chem. Lett. 7(16), 3091–3096 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 15(3), 247 (2016)CrossRefGoogle Scholar
  10. 10.
    S.F. Hoefler, G. Trimmel, T. Rath, Monatsh. Chem. 148(5), 795–826 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Babayigit, D.D. Thanh, A. Ethirajan, J. Manca, M. Muller, H.G. Boyen, B. Conings, Sci. Rep. 6, 18721 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, S.G. Mhaisalkar, J. Mater. Chem. A 3(47), 23829–23832 (2015)CrossRefGoogle Scholar
  13. 13.
    N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Petrozza, Energy Environ. Sci. 7(9), 3061–3068 (2014)CrossRefGoogle Scholar
  14. 14.
    A.K. Baranwal, H. Masutani, H. Sugita, H. Kanda, S. Kanaya, N. Shibayama, T. Miyasaka, Nano Converg. 4(1), 26 (2017)CrossRefGoogle Scholar
  15. 15.
    K.M. McCall, C.C. Stoumpos, S.S. Kostina, M.G. Kanatzidis, B.W. Wessels, Chem. Mater. 29(9), 4129–4145 (2017)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, Y. Gao, J. Phys. Chem. Lett. 8(17), 4300–4307 (2017)CrossRefGoogle Scholar
  17. 17.
    B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M. Johansson, Adv. Mater. 27(43), 6806–6813 (2015)CrossRefGoogle Scholar
  18. 18.
    J.C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, ACS Energy Lett. 1(1), 309–314 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, D.B. Mitzi, Chem. Mater. 27(16), 5622–5632 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Feldmann, Inorg. Chem. 40(4), 818–819 (2001)CrossRefGoogle Scholar
  21. 21.
    W.X. Chai, L.M. Wu, J.Q. Li, L. Chen, Inorg. Chem. 46(4), 1042–1044 (2007)CrossRefGoogle Scholar
  22. 22.
    W.X. Chai, L.M. Wu, J.Q. Li, L. Chen, Inorg. Chem. 46(21), 8698–8704 (2007)CrossRefGoogle Scholar
  23. 23.
    Z. Xiao, W. Meng, D.B. Mitzi, Y. Yan, J. Phys. Chem. Lett. 7(19), 3903–3907 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Oldag, T. Aussieker, H.L. Keller, C. Preitschaft, A. Pfitzner, Z. Anorg. Allg. Chem. 631(4), 677–682 (2005)CrossRefGoogle Scholar
  25. 25.
    K.W. Jung, M.R. Sohn, H.M. Lee, I.S. Yang, S. Do Sung, J. Kim, W.I. Lee, Sustain. Energy Fuels 2(1), 294–302 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Zhu, M. Pan, M.B. Johansson, E.M. Johansson, ChemSusChem 10(12), 2592–2596 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Shao, T. Le Mercier, M.B. Madec, T. Pauporté, Mater. Des. 141, 81–87 (2018)CrossRefGoogle Scholar
  28. 28.
    I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada, H. Tomiyasu, S. Aramaki, ChemSusChem 10(19), 3754–3759 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.H. Kim, M. Liu, E.H. Sargent, Angew. Chem. Int. Edit. 55(33), 9586–9590 (2016)CrossRefGoogle Scholar
  30. 30.
    E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Chem. Mater. 28(5), 1348–1354 (2016)CrossRefGoogle Scholar
  31. 31.
    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, C.D. Lokhande, Appl. Surf. Sci. 256(14), 4411–4416 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Adelifard, M.M. Bagheri Mohagheghi, H. Eshghi, Phys. Scr. 85, 035603–035608 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsDamghan UniversityDamghanIran

Personalised recommendations