Advertisement

Ultrahigh sensitivity acetone sensor based on Gd2O3/Fe2O3 loose microspheres at low temperature

  • Liting Du
  • Li Liu
  • Xiaonian Tang
  • Yu Li
  • Suyan Xu
  • Yimin Gong
  • Yang YangEmail author
Article
  • 13 Downloads

Abstract

Pure Fe2O3 microspheres and Gd2O3/Fe2O3 loose microspheres were synthesized successfully by a facile hydrothermal method and followed with calcined. The structure and elemental composition were provided by the X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). Additionally, the morphology was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which show the loose surface state of Gd2O3/Fe2O3 microspheres. Finally, the property of the gas-sensing sensor based on Gd2O3/Fe2O3 loose microspheres was investigated systematically. It exhibits ultrahigh sensitivity of 268.6 to 100 ppm acetone at low operating temperature 220 °C, which is 9.8 times higher than the pure Fe2O3 microspheres sensor (27.5/100 ppm). Remarkably, the response of Gd2O3/Fe2O3 loose microspheres sensor to 0.1 ppm acetone is 2.3. Furthermore, the sensor shows fast response and recovery time (6/36 s) and splendid selectivity to acetone.

Notes

Acknowledgements

The work has been supported by the Jilin Provincial Science and Technology Department (No. 20170101199JC).

References

  1. 1.
    J. Kaur, K. Anand, A. Kaur, R.C. Singh, Sens. Actuators B 258, 1022 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Song, Q. Wang, Z. Yang, Sens. Actuators B 173, 839 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Salehi, E. Nikan, A.A. Khodadadi, Y. Mortazavi, Sens. Actuators B 205, 261 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Yan, X. Su, C. Yang, J. Wang, C. Niu, Ceram. Int. 40, 1729 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Tan, J. Chen, K. Liu, X. Huang, Sens. Actuators B 230, 46 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Pan, L. Jin, B. Zhang, H. Su, H. Zhang, W. Yang, Sens. Actuators B 243, 29 (2017)CrossRefGoogle Scholar
  7. 7.
    R.-A. Wu, C. Wei Lin, W.J. Tseng, Ceram. Int. 43, S535 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Liu, Y. Wang, P. Zhao, W. Li, Q. Wang, P. Sun, X. Chuai, G. Lu, J. Coll. Interface Sci. 505, 1039 (2017)CrossRefGoogle Scholar
  9. 9.
    P. Zhang, Z.P. Guo, H.K. Liu, Electrochim. Acta 55, 8521 (2010)CrossRefGoogle Scholar
  10. 10.
    J.S. Cho, Y.J. Hong, J.H. Lee, Y.C. Kang, Nanoscale 7, 8361 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Nano Lett. 14, 731 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Liang, J. Li, F. Wang, J. Qin, X. Lai, X. Jiang, Sens. Actuators B 238, 923 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Tan, X. Huang, Sens. Actuators B 237, 159 (2016)CrossRefGoogle Scholar
  14. 14.
    X.-F. Wang, W. Ma, F. Jiang, E.-S. Cao, K.-M. Sun, L. Cheng, X.-Z. Song, Chem. Eng. J. 338, 504 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Liu, P. Song, Z. Yang, Q. Wang, J. Mater. Sci. 29, 5446 (2018)Google Scholar
  16. 16.
    H. Ren, W. Zhao, L. Wang, S.O. Ryu, C. Gu, J. Alloy. Compd. 653, 611 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Huang, K. Yu, C. Gu, M. Zhai, Y. Wu, M. Yang, J. Liu, Sens. Actuators B 147, 467 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu, Sens. Actuators B 256, 861 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Guan, D. Wang, X. Zhou, P. Sun, H. Wang, J. Ma, G. Lu, Sens. Actuators B 191, 45 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Huang, L. Wang, C. Gu, Z. Wang, Y. Sun, J.-J. Shim, Sens. Actuators B 207, 782 (2015)CrossRefGoogle Scholar
  21. 21.
    Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Sens. Actuators B 256, 656 (2018)CrossRefGoogle Scholar
  22. 22.
    W. Zeng, H. Zhang, Y. Li, W. Chen, Z. Wang, Mater. Res. Bull. 57, 91 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Zhou, C. Wang, W. Feng, P. Sun, X. Li, G. Lu, Mater. Lett. 120, 5 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Song, Y. Sun, X. Jia, Ceram. Int. 41, 13224 (2015)CrossRefGoogle Scholar
  25. 25.
    C. Liu, H. Gao, L. Wang, T. Wang, X. Yang, P. Sun, Y. Gao, X. Liang, F. Liu, H. Song, G. Lu, Sens. Actuators B 252, 1153 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Li, D. Lu, C. Shao, G. Lu, X. Li, Y. Liu, Sens. Actuators B 258, 436 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang, T. Zhang, Sens. Actuators B 184, 21 (2013)CrossRefGoogle Scholar
  28. 28.
    J.-H. Lee, Sens. Actuators B 140, 319 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Li, C. Feng, F. Qu, J. Liu, L. Zhu, Y. Lin, Y. Wang, F. Li, J. Zhou, S. Ruan, Sens. Actuators B 207, 90 (2015)CrossRefGoogle Scholar
  30. 30.
    Y.-B. Zhang, J. Yin, L. Li, L.-X. Zhang, L.-J. Bie, Sens. Actuators B 202, 500 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liting Du
    • 1
  • Li Liu
    • 1
  • Xiaonian Tang
    • 1
  • Yu Li
    • 1
  • Suyan Xu
    • 2
  • Yimin Gong
    • 1
  • Yang Yang
    • 1
    Email author
  1. 1.College of Physics, State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China
  2. 2.Dehui secondary vocational and technical schoolChangchunPeople’s Republic of China

Personalised recommendations