Advertisement

Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration

  • O. K. EchenduEmail author
  • S. Z. Werta
  • F. B. Dejene
  • A. A. Ojo
  • I. M. Dharmadasa
Article

Abstract

Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl2, Na2S2O3 and GaCl3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.

Notes

Acknowledgements

Authors are grateful to the University of the Free State, South Africa and the Federal University of Technology, Owerri, Nigeria for financial support.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016)Google Scholar
  2. 2.
    T. Gaewdang, N. Wongcharoen, Heterojunction properties of p-CuO/n-CdS diode. Adv. Mater. Res. 1098, 1–5 (2015)Google Scholar
  3. 3.
    Y. Kraftmankher, Experiments on photoconductivity. Eur. J. Phys. 33, 503–511 (2012)Google Scholar
  4. 4.
    X. Wang, X. He, H. Zhu, L. Sun, W. Fu, X. Wang, L.C. Hoong, H. Wang, Q. Zeng, W. Zhao, J. Wei, Z. Jin, Z. Shen, J. Liu, T. Zhang, Z. Liu, Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2(7), 1–9 (2016)Google Scholar
  5. 5.
    A.K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, I.D.W. Samuel, Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120, 1871–1880 (2016)Google Scholar
  6. 6.
    S.K. Tripathi, R.K. Jyoti, Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route. Opt. Commun. 352, 55–62 (2015)Google Scholar
  7. 7.
    A.A. Ojo, I.M. Dharmadasa, Optimisation of pH of cadmium chloride post-growth-treatment in processing CdS/CdTe based thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 7231–7242 (2017)Google Scholar
  8. 8.
    J. Schaffner, E. Feldmeier, A. Swirschuk, H.J. Schimper, A. Klein, W. Jaegermann, Influence of substrate temperature, growth rate and TCO substrate on the properties of CSS-deposited CdS thin films. Thin Solid Films 519, 7556–7559 (2011)Google Scholar
  9. 9.
    N. Memarian, S.M. Rozati, I. Concina, A. Vomiero, Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature. Materials 10, 773 (2017).  https://doi.org/10.3390/ma10070773 Google Scholar
  10. 10.
    N.R. Paudel, K.A. Wieland, A.D. Compaan, Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)Google Scholar
  11. 11.
    A.H. Rubel, J. Podder, Optical properties of spray pyrolysis deposited CdS:Al thin films. J. Bangladesh Acad. Sci. 39(1), 25–30 (2015)Google Scholar
  12. 12.
    T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, 16.0% efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. 36, 6304–6305 (1997)Google Scholar
  13. 13.
    J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, M. Quevedo-Lopez, In-situ CdS/CdTe heterojuntions deposited by pulsed laser deposition. Thin Solid Films 608, 1–7 (2016)Google Scholar
  14. 14.
    P. Boieriu, R. Sporken, Y. Xin, N.D. Browning, S. Sivananthan, Wurtzite CdS on CdTe grown by molecular beam epitaxy. J. Electron. Mater. 29(6), 718–722 (2000)Google Scholar
  15. 15.
    A.A. Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol-gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effect of post-growth heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)Google Scholar
  16. 16.
    Z. Lu, R. Jin, Y. Liu, L. Guo, X. Liu, J. Liu, K. Cheng, Z. Du, Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53–56 (2017)Google Scholar
  17. 17.
    O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, F.C. Eze, Characteristics of nanocrystallite-CdS produced by low-cost electrochemical technique for thin film photovoltaic application: the influence of deposition voltage. Int. J. Photoenergy (2017).  https://doi.org/10.1155/2017/3989432 Google Scholar
  18. 18.
    M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609–7615 (2015)Google Scholar
  19. 19.
    N. Naghavi, G. Renou, V. Bockelee, F. Donsanti, P. Genevee, M. Jubault, J.F. Guillemoles, D. Lincot, Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: role of window layers. Thin Solid Films 519(21), 7600–7605 (2011)Google Scholar
  20. 20.
    H. Cui, X. Liu, L. Sun, F. Liu, C. Yan, X. Hao, Fabrication of efficient Cu2ZnSnS4 solar cells by sputtering single stoichiometric target. Coatings 7, 19 (2017).  https://doi.org/10.3390/coatings7020019 Google Scholar
  21. 21.
    O.K. Echendu, F. Fauzi, A.R. Weerasinghe, I.M. Dharmadasa, High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529–534 (2014)Google Scholar
  22. 22.
    J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431–432, 344–348 (2003)Google Scholar
  23. 23.
    H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129–4134 (2009)Google Scholar
  24. 24.
    S. Alhammadi, H. Jung. S. Kwon., H. Park., J.J. Shim, M.H. Cho, M. Lee, J.S. Kim, W.K. Kim, Effect of gallioun doping on CdS thin film properties and corresponding Cu(InGa)Se2/CdS:Ga solar cell performance. Thin Solid Films (2018).  https://doi.org/10.1016/j.tsf.2018.06.014 (In press)Google Scholar
  25. 25.
    J. Yang, R. Liu, S. Huang, Y. Shao, Y. Huang, Y. Yu, Enhanced photocatalytic activity and stability of interstitial Ga-doped CdS: combination of experiment and calculation. Catal. Today 224, 104–113 (2014)Google Scholar
  26. 26.
    J. Cai, J. Jie, P. Jiang, D. Wu, C. Xie, C. Wu, Z. Wang, Y. Yu, L. Wang, X. Zhang, Q. Peng, Y. Jiang, Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 13, 14663–14667 (2011)Google Scholar
  27. 27.
    O.K. Echendu, I.M. Dharmadasa, Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies 8, 4416–4435 (2015).  https://doi.org/10.3390/en8054416 Google Scholar
  28. 28.
    R.N. Bhattacharya, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Sol. Energy Mater. Sol. Cells 113, 96–99 (2013)Google Scholar
  29. 29.
    J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A (2013).  https://doi.org/10.1039/C5TA09636G Google Scholar
  30. 30.
    O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, Effects of deposition time and post-deposition annealing on the physical and chemical properties of electrodeposited CdS thin films for solar cell application. J. Mater. Sci.: Mater. Electron. 27, 10180–10191 (2016)Google Scholar
  31. 31.
    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci.: Mater. Electron. 26, 2418–2429 (2015)Google Scholar
  32. 32.
    O.K. Echendu, S.Z. Werta, F.B. Dejene, V. Craciun, Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications. J. Alloys Compd. 769, 201–209 (2018)Google Scholar
  33. 33.
    O.K. Echendu, S.Z. Werta, F.B. Dejene, K.O. Egbo, Structural, vibrational, optical, morphological and compositional properties of CdS films prepared by a low-cost electrochemical technique. J. Alloys Compd. 778, 197–203 (2019)Google Scholar
  34. 34.
    A.C.S. De Alwis, H.Y.R. Atapattu, D.S.M. De Silva, Influence of the type of conducting glass substrate on the properties of electrodeposited CdS and CdTe thin films. J. Mater. Sci.: Mater. Electron. 29(4), 12419–12428 (2018)Google Scholar
  35. 35.
    O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, An investigation of the influence of different transparent conducting oxide substrates/front contacts on the performance of CdS/CdTe thin film solar cells. J. Mater. Sci.: Mater. Electron. 28, 18865–18872 (2017)Google Scholar
  36. 36.
    E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)Google Scholar
  37. 37.
    T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775 (1954)Google Scholar
  38. 38.
    H. Jager, E. Seipp, Burstein-Moss shift in heavily In-doped evaporated CdS layers. J. Appl. Phys. 52(1), 425–427 (1981)Google Scholar
  39. 39.
    K.F. Berggren, B.E. Sernelius, Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24(4), 1971–1986 (1981)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Solar Energy Materials, Sensors and Luminescence Materials Group, Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa
  2. 2.Electronic Materials and Sensors Group, Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations