Advertisement

Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications

  • M. I. A. Abdel MaksoudEmail author
  • Ahmed El-ghandour
  • Gharieb S. El-Sayyad
  • A. S. Awed
  • Ramy Amer Fahim
  • M. M. Atta
  • A. H. Ashour
  • Ahmed I. El-Batal
  • Mohamed Gobara
  • E. K. Abdel-Khalek
  • M. M. El-Okr
Article
  • 28 Downloads

Abstract

Spinel ferrites (SFs) show high potential in different aspects of modern technology. Particularly, copper ferrite represents a promising electrode material for supercapacitors and lithium based batteries. This paper is devoted to synthesizing and characterizing nanostructured copper substituted cobalt ferrites using an eco-friendly sol–gel method. Energy dispersive X-ray (EDX) and FT-IR analyses confirm the chemical composition and the successful formation of the cubic phase of CuFe2O4, respectively. XRD analyses based on Williamson–Hall (W–H) method indicate that the average crystallite size drops from 25.1 to 12.1 nm dependent on the Cu2+ content in the samples. Further, scanning electron microscopy (SEM) reveals that the CoFe2O4 (CFO) has a honeycomb structure, which gradually disappears with the soaring of Cu2+ content in the samples and converts to a porous sponge-like shape structure. The investigated copper substituted CFO holds a high specific surface area equals to 102.5139 m2 g−1 which satisfies the contaminant adsorption applications. The measured DC resistivity (ρDC = 108 Ω m) is high enough to meet the requirements of transformer cores applications. Due to the difference in the magnetic moment between Cu2+ and Co2+ cations, the coercivity of the CFO significantly depends on the Cu2+ content; it has declined by more than 50% for the system Co0.25Cu0.75Fe2O4 in comparison to the pure CFO (Hc = 1617.30 Gauss).

Notes

Acknowledgements

The authors thank the Materials Science Unit, Radiation Physics Department, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project Synthesizing and Characterizations of Nanostructured Magnetic Materials.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_785_MOESM1_ESM.docx (276 kb)
Supplementary material 1 (DOCX 275 KB)
10854_2019_785_MOESM2_ESM.docx (166 kb)
Supplementary material 2 (DOCX 166 KB)
10854_2019_785_MOESM3_ESM.docx (105 kb)
Supplementary material 3 (DOCX 104 KB)
10854_2019_785_MOESM4_ESM.docx (1.2 mb)
Supplementary material 4 (DOCX 1186 KB)
10854_2019_785_MOESM5_ESM.docx (123 kb)
Supplementary material 5 (DOCX 123 KB)
10854_2019_785_MOESM6_ESM.docx (151 kb)
Supplementary material 6 (DOCX 150 KB)
10854_2019_785_MOESM7_ESM.docx (80 kb)
Supplementary material 7 (DOCX 79 KB)
10854_2019_785_MOESM8_ESM.docx (15 kb)
Supplementary material 8 (DOCX 14 KB)

References

  1. 1.
    A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70—xCuxZn0. 30Fe2O4 spinel ferrite. Ceram. Int. 44(5), 5466–5472 (2018)Google Scholar
  2. 2.
    T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloy. Compd. 694, 777–791 (2017)Google Scholar
  3. 3.
    J. Patil, D. Nadargi, I.S. Mulla, S. Suryavanshi, Spinel MgFe 2 O 4 thick films: a colloidal approach for developing gas sensors. Mater. Lett. 213, 27–30 (2018)Google Scholar
  4. 4.
    S. Goh, C.H. Chia, S. Zakaria, M. Yusoff, C. Haw, S. Ahmadi, N. Huang, H. Lim, Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater. Chem. Phys. 120(1), 31–35 (2010)Google Scholar
  5. 5.
    M. Sedlacik, V. Pavlinek, P. Peer, P. Filip, Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Trans. 43(18), 6919–6924 (2014)Google Scholar
  6. 6.
    N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Synthesis and magnetism of hierarchical iron oxide particles. Mater. Des. 86, 797–808 (2015)Google Scholar
  7. 7.
    N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15(12), 10091–10107 (2015)Google Scholar
  8. 8.
    K.-H. Hellwege, L. Bornstein, Numerical Data and Functional Relationship in Science and Technology, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystal (Springer-Verlag Berlin, Heidelberg, New York, 1979)Google Scholar
  9. 9.
    I. Campbell, A. Fert, Ferromagnetic materials (EP Wolfarth, Amsterdam, 1982)Google Scholar
  10. 10.
    K. Khalaf, A. Al-Rawas, H. Widatallah, K. Al-Rashdi, A. Sellai, A. Gismelseed, M. Hashim, S. Jameel, M. Al-Ruqeishi, K. Al-Riyami, Influence of Zn2+ ions on the structural and electrical properties of Mg1—xZnxFeCrO4 spinels. J. Alloy. Compd. 657, 733–747 (2016)Google Scholar
  11. 11.
    W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11(2), 479–484 (2009)Google Scholar
  12. 12.
    V. Lakhani, B. Zhao, L. Wang, U. Trivedi, K. Modi, Negative magnetization, magnetic anisotropy and magnetic ordering studies on Al3+-substituted copper ferrite. J. Alloy. Compd. 509(14), 4861–4867 (2011)Google Scholar
  13. 13.
    N. Moumen, M. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)Google Scholar
  14. 14.
    C. Pham-Huu, N. Keller, C. Estournes, G. Ehret, J. Greneche, M. Ledoux, Microstructural investigation and magnetic properties of CoFe 2 O 4 nanowires synthesized inside carbon nanotubes. Phys. Chem. Chem. Phys. 5(17), 3716–3723 (2003)Google Scholar
  15. 15.
    H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)Google Scholar
  16. 16.
    M. Sajjia, M. Oubaha, M. Hasanuzzaman, A.G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceram. Int. 40(1), 1147–1154 (2014)Google Scholar
  17. 17.
    A. Samavati, A. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)Google Scholar
  18. 18.
    B.C. Sekhar, G. Rao, O. Caltun, B.D. Lakshmi, B.P. Rao, P.S. Rao, Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J. Magn. Magn. Mater. 398, 59–63 (2016)Google Scholar
  19. 19.
    M. Orojloo, P. Zolgharnein, M. Solimannejad, S. Amani, Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes derived from two Schiff base ligands: Spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies. Inorg. Chim. Acta 467, 227–237 (2017)Google Scholar
  20. 20.
    M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Co (1 – x)] MxFe2O4;(M = Zn, Cu, Mn; x = 0, 05)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)Google Scholar
  21. 21.
    A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)Google Scholar
  22. 22.
    A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)Google Scholar
  23. 23.
    P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)Google Scholar
  24. 24.
    K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of Ni x Cu 0.1 Zn 0.9 – x Fe 2 O 4 nanoferrites: Role of constant mole percent of Cu 2 + dopant in place of Zn 2+. Ceram. Int. 43(11), 7984–7991 (2017)Google Scholar
  25. 25.
    M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)Google Scholar
  26. 26.
    A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)Google Scholar
  27. 27.
    M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloy. Compd. 549, 348–357 (2013)Google Scholar
  28. 28.
    V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)Google Scholar
  29. 29.
    M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)Google Scholar
  30. 30.
    E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)Google Scholar
  31. 31.
    M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)Google Scholar
  32. 32.
    A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0. 4Co0. 6Fe2O4) ferrites. Phys. B 507, 27–34 (2017)Google Scholar
  33. 33.
    A. Ramakrishna, N. Murali, S. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C.S. Kumari, K. Samatha, V. Veeraiah, Studies on structural, magnetic, and DC electrical resistivity properties of Co0. 5M0. 37Cu0. 13Fe2O4 (M = Ni, Zn and Mg) ferrite nanoparticle systems, Adv. Powder Technol. 29, 2601–2607 (2018)Google Scholar
  34. 34.
    M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe2 + CrxFe (2 – x) O4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)Google Scholar
  35. 35.
    M. Amer, T. Meaz, A. Mostafa, H. El-Ghazally, Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J. Magn. Magn. Mater. 343, 286–292 (2013)Google Scholar
  36. 36.
    R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li + substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)Google Scholar
  37. 37.
    C.C. Naik, S. Gaonkar, I. Furtado, A. Salker, Effect of Cu 2 + substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. J. Mater. Sci. Mater. Electron. 29(17), 14746–14761 (2018)Google Scholar
  38. 38.
    S. Singhal, J. Singh, S. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co 1 – xNixFe 2 O 4). J. Solid State Chem. 178(10), 3183–3189 (2005)Google Scholar
  39. 39.
    J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater. Lett. 81, 52–54 (2012)Google Scholar
  40. 40.
    M. Gabal, Y. Al Angari, M. Kadi, Structural and magnetic properties of nanocrystalline Ni1 – xCuxFe2O4 prepared through oxalates precursors. Polyhedron 30(6), 1185–1190 (2011)Google Scholar
  41. 41.
    K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of Cobalt-Nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)Google Scholar
  42. 42.
    K.V. Babu, G.S. Kumar, K. Jalaiah, P.T. Shibeshi, Effects of copper substitution on the microstructural, electrical and magnetic properties of Ni0. 7Co0. 3-xCuxFe2O4 ferrites. J. Phys. Chem. Solids 118, 172–185 (2018)Google Scholar
  43. 43.
    R. Devan, Y. Kolekar, B. Chougule, Effect of cobalt substitution on the properties of nickel–copper ferrite. J. Phys. Condens. Matter. 18(43), 9809 (2006)Google Scholar
  44. 44.
    M. Kurian, A. Appukkuttan, A.K. Paul, D.S. Nair, Influence of synthesis conditions on the surface properties of cobalt copper nanoferrites. J. Aust. Ceram. Soc. 54(2), 199–204 (2018)Google Scholar
  45. 45.
    M.N. Akhtar, A. Rahman, A. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0. 5 MgxZn0. 5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(5), 4357–4365 (2017)Google Scholar
  46. 46.
    D. Jnaneshwara, D. Avadhani, B.D. Prasad, H. Nagabhushana, B. Nagabhushana, S. Sharma, S. Prashantha, C. Shivakumara, Role of Cu2 + ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 256–262 (2014)Google Scholar
  47. 47.
    K. Ramakrishna, C. Srinivas, S. Meena, B. Tirupanyam, P. Bhatt, S. Yusuf, C. Prajapat, D. Potukuchi, D. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0. 1Zn0. 9 – xFe2O4 nanoferrites: Role of constant mole percent of Cu2 + dopant in place of Zn2+. Ceram. Int. 43(11), 7984–7991 (2017)Google Scholar
  48. 48.
    K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3(1), 42 (2013)Google Scholar
  49. 49.
    G. Mustafa, M. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, Investigation of structural and magnetic properties of Ce 3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloy. Compd. 618, 428–436 (2015)Google Scholar
  50. 50.
    M. Dar, D. Varshney, Effect of d-block element Co2 + substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)Google Scholar
  51. 51.
    Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29(20), 1602300 (2017)Google Scholar
  52. 52.
    F. Dehghani, S. Hashemian, A. Shibani, Effect of calcination temperature for capability of MFe2O4 (M = Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. J. Ind. Eng. Chem. 48, 36–42 (2017)Google Scholar
  53. 53.
    K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 372, 208–213 (2014)Google Scholar
  54. 54.
    T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)Google Scholar
  55. 55.
    S. Patange, S.E. Shirsath, K. Lohar, S. Algude, S. Kamble, N. Kulkarni, D. Mane, K. Jadhav, Infrared spectral and elastic moduli study of NiFe 2 – x Cr x O 4 nanocrystalline ferrites. J. Magn. Magn. Mater. 325, 107–111 (2013)Google Scholar
  56. 56.
    M. Amer, Structural and magnetic studies of the Co 1 + x Ti x Fe 2 (1 – x) O 4 ferrites. J. Magn. Magn. Mater. 426, 771–778 (2017)Google Scholar
  57. 57.
    E. El-Ghazzawy, M. Amer, Structural, elastic and magnetic studies of the as-synthesized Co 1 – x Sr x Fe 2 O 4 nanoparticles. J. Alloy. Compd. 690, 293–303 (2017)Google Scholar
  58. 58.
    W. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16(1), 62 (1953)Google Scholar
  59. 59.
    K. Modi, M. Rangolia, M. Chhantbar, H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J. Mater. Sci. 41(22), 7308–7318 (2006)Google Scholar
  60. 60.
    V. Patil, S.E. Shirsath, S. More, S. Shukla, K. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488(1), 199–203 (2009)Google Scholar
  61. 61.
    M. Amer, A. Matsuda, G. Kawamura, R. El-Shater, T. Meaz, F. Fakhry, Characterization and structural and magnetic studies of as-synthesized Fe 2 + CrxFe (2 – x) O 4 nanoparticles. J. Magn. Magn. Mater. 439, 373–383 (2017)Google Scholar
  62. 62.
    R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3 + substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42(14), 16096–16102 (2016)Google Scholar
  63. 63.
    M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E. Abdel-Khalek, M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial pathogenesis 127, 144–158 (2019)Google Scholar
  64. 64.
    S. Algude, S. Patange, S.E. Shirsath, D. Mane, K. Jadhav, Elastic behaviour of Cr 3 + substituted Co–Zn ferrites. J. Magn. Magn. Mater. 350, 39–41 (2014)Google Scholar
  65. 65.
    S.E. Shirsath, S. Patange, R. Kadam, M. Mane, K. Jadhav, Structure refinement, cation site location, spectral and elastic properties of Zn 2 + substituted NiFe 2 O 4. J. Mol. Struct. 1024, 77–83 (2012)Google Scholar
  66. 66.
    R. Pawar, S. Desai, S. Patange, S. Jadhav, K. Jadhav, Inter-atomic bonding and dielectric polarization in Gd 3 + incorporated Co-Zn ferrite nanoparticles. Phys. B 510, 74–79 (2017)Google Scholar
  67. 67.
    N. Abu-Elsaad, Elastic properties of germanium substituted lithium ferrite. J. Mol. Struct. 1075, 546–550 (2014)Google Scholar
  68. 68.
    I. Ahmad, S.M. Shah, M.N. Ashiq, F. Nawaz, A. Shah, M. Siddiq, I. Fahim, S. Khan, Fabrication of Nd3 + and Mn2 + ions co-doped spinal strontium nanoferrites for high frequency device applications. J. Electron. Mater. 45(10), 4979–4988 (2016)Google Scholar
  69. 69.
    T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Studies of structural, morphological, electrical, and magnetic properties of Mg-substituted Co-ferrite materials synthesized using sol-gel autocombustion method. Phys. B 523, 24–30 (2017)Google Scholar
  70. 70.
    A. Mostafa, E. Abdel-Khalek, W. Daoush, S. Moustfa, Study of some co-precipitated manganite perovskite samples-doped iron. J. Magn. Magn. Mater. 320(24), 3356–3360 (2008)Google Scholar
  71. 71.
    C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of nickel on the electrical properties of nanostructured MnZn ferrite. J. Alloys Compd. 498(2), 203–206 (2010)Google Scholar
  72. 72.
    L. Van Uitert, Dc resistivity in the nickel and nickel zinc ferrite system. J. Chem. Phys. 23(10), 1883–1887 (1955)Google Scholar
  73. 73.
    K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, S. Ramarao, K. Rajasekhar, A.V. Rao, Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite. Phys. B 528, 18–23 (2018)Google Scholar
  74. 74.
    M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co1 – xZnxFe2O4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)Google Scholar
  75. 75.
    O. Hemeda, M. El-Saadawy, Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J. Magn. Magn. Mater. 256(1–3), 63–68 (2003)Google Scholar
  76. 76.
    A. Tawfik, S. Olofa, The diffusion coefficient of vacancies and jump length of electrons in zinc doped manganese ferrite. J. Magn. Magn. Mater. 174(1–2), 133–136 (1997)Google Scholar
  77. 77.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, I. Ali, Synthesis, electrical and magnetic properties of Pr-substituted mn ferrites for high-frequency applications. J. Electron. Mater. 46(3), 1826–1835 (2017)Google Scholar
  78. 78.
    M.T. Farid, I. Ahmad, M. Kanwal, I. Ali, Effect of praseodymium ions on manganese based spinel ferrites, Chin. J. Phys. 55, 813–824 (2017)Google Scholar
  79. 79.
    P.P. Naik, R. Tangsali, Enduring effect of rare earth (Nd3+) doping and γ-radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloy. Compd. 723, 266–275 (2017)Google Scholar
  80. 80.
    M. Raghasudha, D. Ravinder, P. Veerasomaiah, Electrical resistivity studies of Cr doped Mg nano-ferrites. Mater. Discov. 2, 50–54 (2015)Google Scholar
  81. 81.
    M. El-Saadawy, Diffusion coefficient of vacancies and jump length of electrons in Co 1 – x Zn x Fe 2 O 4 ferrites. J. Adv. Ceram. 1(2), 144–149 (2012)Google Scholar
  82. 82.
    X. Guoxi, X. Yuebin, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater. Lett. 164, 444–448 (2016)Google Scholar
  83. 83.
    H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)Google Scholar
  84. 84.
    R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)Google Scholar
  85. 85.
    K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M.A. El-sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. I. A. Abdel Maksoud
    • 1
    Email author
  • Ahmed El-ghandour
    • 2
  • Gharieb S. El-Sayyad
    • 3
  • A. S. Awed
    • 4
  • Ramy Amer Fahim
    • 5
  • M. M. Atta
    • 1
  • A. H. Ashour
    • 1
  • Ahmed I. El-Batal
    • 3
  • Mohamed Gobara
    • 6
  • E. K. Abdel-Khalek
    • 7
  • M. M. El-Okr
    • 7
  1. 1.Materials Science Lab., Radiation Physics DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  2. 2.Center of Photonics and Smart MaterialsZewail City of Science and Technology, 6th of OctoberGizaEgypt
  3. 3.Drug Radiation Research DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  4. 4.Physics Department, Faculty of ScienceDamietta University, New DamiettaDamiettaEgypt
  5. 5.Radiation Protection and Dosimetry DepartmentNational, Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  6. 6.Chemical Engineering DepartmentMilitary Technical College, Egyptian Armed ForcesCairoEgypt
  7. 7.Physics Department, Faculty of Science (Boys Branch)Al-Azhar UniversityCairoEgypt

Personalised recommendations