Advertisement

Thermoelectric properties of indium-doped zinc oxide sintered in an argon atmosphere

  • Mati UllahEmail author
  • Wang ChunleiEmail author
  • Wen-Bin Su
  • Abdul Manan
  • Arbab Safeer Ahmad
  • Ata Ur Rehman
Article
  • 17 Downloads

Abstract

Solid-state reaction (SSR) was used to synthesize samples of (Zn1–xInx)O, with x = 0.05, 0.02, 0.01, 0.005 and 0.00 respectively. All compositions were sintered in an argon atmosphere and their thermoelectric properties, phase constituents, and microstructures were investigated. Single-phase ceramic was formed for each composition with dense microstructure. In3+ doping lowered the electrical resistivity of ZnO and in the present study, lower value of electrical resistivity ρ ~ 1.884 mΩ·cm and highest power factor (P.F) ~ 4.660 × 10−4 WK−2 m−1 at 693.4 °C respectively are obtained for the composition with x = 0.02. The electrical resistivities (ρ) of all compositions were regulated. The tuned and regulated (ρ) are expected to be helpful for future thermoelectric devices.

Notes

Acknowledgements

The authors acknowledge the support by the Key Laboratory of Advanced Materials and State Key Laboratory of Crystal Materials, Shandong University. The financial support provided by the Government of P. R. China under the Fundamental Research Grant (No. 2015TB019), Jinan 250100, People’s Republic of China is also highly acknowledged. The help of professor Ikram Ullah Khan of Government Degree College Bakshali, Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan for his valuable discussion and English language improvements is also highly acknowledged.

References

  1. 1.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Liu, T. Wang, Acta Chim. Sin. 75(11), 1029 (2017)CrossRefGoogle Scholar
  3. 3.
    N. Liu, Z. Li, Mater. Sci. Semicond. Process. 79, 24 (2018)CrossRefGoogle Scholar
  4. 4.
    L. E. Bell, Science 321, 1457 (2008)CrossRefGoogle Scholar
  5. 5.
    R.U.R. Sagar, X. Zhang, C. Xiong, Y. Yu, Carbon 76, 64 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Qiu, A. Hayden, Appl. Energy 91, 304 (2012)CrossRefGoogle Scholar
  7. 7.
    A.Z. Sahin, B.S. Yilbas, S.Z. Shuja, O. Momin, Energy 36, 4048 (2011)CrossRefGoogle Scholar
  8. 8.
    C.H. Kwon, H.K. Hong, D.H. Yun, K. Lee, S.T. Kim, Sen. Actuators B 25, 610 (1995)CrossRefGoogle Scholar
  9. 9.
    T.K. Roy, D. Sanyal, D. Bhowmick, A. Chakrabarti, Mater. Sci. Semicond. Process 16, 332 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Janotti, C.G. Vande Walle, Phys. Rev. B 76, 165202 (2007)CrossRefGoogle Scholar
  11. 11.
    P.D.C. King, T.D. Veal, J. Phys.: Condens. Matter. 23, 334214 (2011)Google Scholar
  12. 12.
    S. Dutta, S. Chattyopadhya, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Prog. Mater. Sci. 54, 89 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, & L. M. Mei, Sci. Rep. 6, 23044 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, & X. H. Chen, Sci. Rep. 5, 10606 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, X. Wang, Phys. Rev. Mater. 1(4), 044805 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Shabbir, M. Nadeem, Z. Dai, M.S. Fuhrer, X. Wang, Q. Bao, Appl. Phys. Rev. 5(4), 041105 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79, 1816 (1996)CrossRefGoogle Scholar
  18. 18.
    S. Yang, F. Chen, X. Gao, Q. Shen, L. Zhang, J. Am. Ceram. Soc. 100, 1300 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin. Sol. Film. 445, 263 (2003)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, W. Zhang, E. Zhao, H. J. Jacques, Mater. Sci. Semi. Proc. 14, 189 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Bérardan, C. Byl, N. Dragoe, J. Am. Ceram. Soc. 93, 2352 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Vogel-Schäuble, Y.E. Romanyuk, S. Yoon, K.J. Saji, S. Populoh, S. Pokrant, Thin Solid Films 520, 6869 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Ullah, C.L. Wang, W.B. Su, A. Zaman, I. Ullah, J.Z. Zhai, D.K. Liu, J. Mater. Sci.: Mater. Electron. 29, 9555 (2018)Google Scholar
  24. 24.
    M. Ullah, C.L. Wang, W.B. Su, J. Li, A. Manan, I. Ullah, M. Idrees, Mater. Sci. Semicond. Process 87, 202 (2018)CrossRefGoogle Scholar
  25. 25.
    G. Korotcenkov, V. Brinzari, M. H. Ham, Crystals 8, 1–37 (2018)CrossRefGoogle Scholar
  26. 26.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  27. 27.
    B. Karthikeyan, T. Pandiyarajan, K. Mangaiyarkarasi, Spectrochim. Acta A 82, 97 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Phys. B: Cond. Mater. 407, 1223 (2012)CrossRefGoogle Scholar
  29. 29.
    X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)CrossRefGoogle Scholar
  30. 30.
    D.I. Rusu, G.G. Rusu, D. Luca, Acta Phys. Pol. A 119, 850 (2011)CrossRefGoogle Scholar
  31. 31.
    T. Norby, J. Korean Ceram. Soc. 47(1), 19 (2010)CrossRefGoogle Scholar
  32. 32.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.G. He, Gao, J.P. Li, Appl. Phys. Lett. 84, 3085 (2004)CrossRefGoogle Scholar
  33. 33.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68(3), 403 (1996).  https://doi.org/10.1063/1.116699 CrossRefGoogle Scholar
  34. 34.
    A.M. Alsmadi, N. Masmali, H. Jia, J. Guenther, H.A. Jeib, L.L. Kerr, & K. F. Eid, J. Appl. Phys. 117, 155703 (2015)CrossRefGoogle Scholar
  35. 35.
    N.F. Mott, Philos. Mag. 26, 1015 (1972)CrossRefGoogle Scholar
  36. 36.
    H. Cheng, X.J. Xu, H.H. Hng, J. Ma, Ceram. Int. 35, 3067 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Ullah, W.B. Su, A. Manan, A. S. Ahmad, Z. A. A. Shah, Z. Yao, Ceram. Int. 44(15), 17873 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsShandong UniversityJinanPeople’s Republic of China
  2. 2.MOE State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China
  3. 3.Department of PhysicsUniversity of Science & Technology BannuBannuPakistan
  4. 4.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  5. 5.Institute for Energy Transmission Technology and Applications School of Chemical EngineeringNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations