Advertisement

Effects of Si nanowire on the device properties of n-ZnSe/p-Si heterostructure

  • E. Coskun
  • H. H. GulluEmail author
  • T. Colakoglu
  • C. Emir
  • E. Bozdogan
  • M. Parlak
Article
  • 42 Downloads

Abstract

The semiconductor nanowire (NW) technology has raised attention owing to its one-dimensional geometry as a solution for lattice mismatch in the fabricated heterostructures. Although, SiNWs have been investigated for various device technologies, there is no published work on the p–n junction formed by deposition of ZnSe thin film on these NW structures, in which this film layer has significant optical and electrical properties in optoelectronics applications. The aim of this study is determining the device properties of n-ZnSe/SiNW heterojunction and obtaining the enhancement in the device application of the NW structure on Si surface with comparing to planar surface. SiNW was produced by metal assisted etching method as a cost-efficient process, and the ZnSe film was deposited on SiNW and planar Si substrates by thermal evaporation of elemental sources. The optical band gap of the deposited ZnSe film was determined as 2.7 eV which is in a good agreement with literature. The ideality factor and series resistance values of the ZnSe/SiNW and ZnSe/Si heterojunctions were calculated as 3.12, 461 Ω, and 4.52, \(7.26 \times {10^3}\) Ω, respectively. As a result of utilizing SiNW structure, a spectacular improvement in terms of the physical parameters related to device properties was achieved.

References

  1. 1.
    J. Goldberger, A.I. Hochbaum, R. Fan, P.S. Yang, Nano Lett. 6, 973 (2006)CrossRefGoogle Scholar
  2. 2.
    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Zou, H. Li, P. Ren, J. Xu, L. Ma, X. Wang, X. Fan, Z. Shan, X. Zhuang, H. Zhou, X. Zhu, Q. Zhang, A. Pan, Mater. Lett. 129, 118 (2014)CrossRefGoogle Scholar
  4. 4.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, Nature 451, 163 (2008)CrossRefGoogle Scholar
  5. 5.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, J.R. Heath, Nature 451, 168 (2008)CrossRefGoogle Scholar
  6. 6.
    C.H. Lee, D.R. Kim, X. Zheng, Nano Lett. 10, 5116 (2010)CrossRefGoogle Scholar
  7. 7.
    C.-Y. Huang, Y.-J. Yang, J.-Y. Chen, C.-H. Wang, Y.-F. Chen, L.-S. Hong, Appl. Phys. Lett. 97, 13503 (2010)CrossRefGoogle Scholar
  8. 8.
    C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, ACS Nano 4, 1443 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Patolsky, C.M. Lieber, Mater. Today 8, 20 (2005)CrossRefGoogle Scholar
  10. 10.
    M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, Nano Lett. 8, 710 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Ke, X. Wang, X.J. Weng, C.E. Kendrick, Y.A. Yu, S.M. Eichfeld, Nanotechnology 22, 445401 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Appl. Phys. Lett. 99, 3 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Nanotechnology 22, 155606 (2011)CrossRefGoogle Scholar
  14. 14.
    B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)CrossRefGoogle Scholar
  15. 15.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  16. 16.
    N. Saddiqi, H. Javed, M. Islam, K. Ghauri, Chem. Mater. Res. 6, 76 (2014)Google Scholar
  17. 17.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011)CrossRefGoogle Scholar
  18. 18.
    B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele, Nano Lett. 5, 2524 (2005)CrossRefGoogle Scholar
  19. 19.
    X. Xu, S. Li, Y. Wang, T. Fan, Y. Jiang, L. Huang, Nanoscale Res. Lett. 7, 243 (2012)CrossRefGoogle Scholar
  20. 20.
    Z. Huang, X. Zhang, M. Reiche, L. Ltu, W. Lee, S. Shimizu, Nano Lett. 8, 3046 (2008)CrossRefGoogle Scholar
  21. 21.
    V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Adv. Mater. 2, 12681 (2009)Google Scholar
  22. 22.
    A. Wolfsteller, N. Geyer, T.K. Nguyen-Duc, P. Das Kanungo, N.D. Zakharov, M. Reiche, Thin Solid Films 518, 2555 (2010)CrossRefGoogle Scholar
  23. 23.
    R.-Q. Zhang, Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations (Springer, Berlin, 2014)CrossRefGoogle Scholar
  24. 24.
    D.R. Vij, N. Singh, Luminescence and Related Properties of II-VI Semiconductors (Nova Science Publishers, New York, 1998)Google Scholar
  25. 25.
    S. Darwish, A.S. Riad, H.S. Soliman, Semicond. Sci. Technol. 11, 96 (1996)CrossRefGoogle Scholar
  26. 26.
    S. Venkatachalam, D. Mangalaraj, Sa.K. Narayandass, S. Velumani, P. Schabes-Retchkiman, J.A. Ascencio, Mater. Chem. Phys. 103, 305 (2007)CrossRefGoogle Scholar
  27. 27.
    H.H. Gullu, O. Bayrakli, D.E. Yildiz, M. Parlak, J. Mater. Sci.: Mater. Electron. 28, 17806 (2017)Google Scholar
  28. 28.
    X. Zhang, X. Zhang, L. Wang, Y. Wu, Y. Wang, P. Gao, Y. Han, J. Jie, Nanotechnology 24, 395201 (2013)CrossRefGoogle Scholar
  29. 29.
    W. Kern, J. Electrochem. Soc. 137, 1887 (1990)CrossRefGoogle Scholar
  30. 30.
    S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Springer, New York, 1999)CrossRefGoogle Scholar
  31. 31.
    H.H. Gullu, I. Candan, E. Coskun, M. Parlak, Optik 126, 1578 (2015)CrossRefGoogle Scholar
  32. 32.
    K.R. Murali, S. Dhanapandiyana, C. Manoharana, Chalcogenide Lett. 6, 51 (2009)Google Scholar
  33. 33.
    A.G. Milnes, D.L. Feucht, Heterojunctions and Metal Semiconductor Junctions (Academic Press, New York, 1972)Google Scholar
  34. 34.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2007)Google Scholar
  35. 35.
    M. Kulakci, T. Colakoglu, B. Ozdemir, M. Parlak, H.E. Unalan, R. Turan, Nanotechnology 24, 375203 (2013)CrossRefGoogle Scholar
  36. 36.
    D. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2016)Google Scholar
  37. 37.
    E. Coskun, H.H. Gullu, I. Candan, O. Bayrakli, M. Parlak, C. Ercelebi, Mater. Sci. Semicond. Process. 34, 138 (2015)CrossRefGoogle Scholar
  38. 38.
    O. Bayrakli, M. Terlemezoglu, H.H. Gullu, M. Parlak, J. Alloys Compd. 709, 337 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Bengi, S.J. Jang, C.I. Yeo, T. Mammadov, S. Ozcelik, Y.T. Lee, Solid State Electron. 61, 29 (2011)CrossRefGoogle Scholar
  40. 40.
    I.S. Yahia, M. Fadel, G.B. Sakr, F. Yakuphanoglu, S.S. Shenouda, W.A. Farooq, J. Alloys Compd. 509, 4414 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Terlemezoglu, O. Bayrakli, H.H. Gullu, T. Colakoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci.: Mater. Electron. 29, 5264 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Center for Solar Energy Research and Applications (GÜNAM)Middle East Technical UniversityAnkaraTurkey
  4. 4.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations