Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics

  • Yuzhi Zhai
  • Juan DuEmail author
  • Chong Chen
  • Jigong Hao
  • Peng Fu
  • Wei LiEmail author
  • Zhijun Xu


For green development concern, lead-free piezoelectric ceramics 0.96(K0.48Na0.52)Nb0.96Sb0.04O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3xmol%Tm2O3 fabricated via conventional solid state method are studied. The analyses of X-ray diffraction and Raman dates show the coexistence phase of orthorhombic–tetragonal. Meanwhile, the tetragonal fraction increases with increasing Tm contents. Both the Cure temperature and the responding maximum permittivity decline with increasing x. At the same time, there are diffuse phase transition and relaxation-like phenomena after doping Tm. The activation energy, obtained from Arrhenius equation, suggests that there is a mixed conduction mechanism by both single-ionized and doubly oxygen vacancy diffusion. The temperature stabilities of remnant polarization and unipolar strain are significantly improved in the temperature range of 30–150 °C. Rare earth element Tm is useful for improving the temperature stability of the KNN-based piezoelectric ceramics.



This work was supported by Natural Science Foundation of Shandong China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (NO.2016YFB0402701), the Key R & D project of Shandong Province (No. 2017GGX202008) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J17KA005).


  1. 1.
    Y. Zhang, B. Shen, J. Zhai, H. Zeng, J. Am. Ceram. Soc. 99, 752–755 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Mater. Chem. Phys. 126, 769–772 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Deng, X. Sun, L. Liu, S. Liu, Y. Huang, L. Fang, B. Elouadi, J. Electron. Mater. 45, 4089–4099 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180–1185 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, J. Appl. Phys. 116, 044105 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Zheng, X. Huo, R. Wang, J. Wang, W. Jiang, W. Cao, CrystEngComm 15, 7718 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, J. Appl. Phys. 114, 104105 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839–847 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578–5585 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Sui, H. Fan, B. Hu, L. Ning, Ceram. Int. 44, 18054–18059 (2018)CrossRefGoogle Scholar
  14. 14.
    N. Zhao, H. Fan, J. Ma, X. Ren, Y. Shi, Y. Zhou, Ceram. Int. 44, 11331–11339 (2018)CrossRefGoogle Scholar
  15. 15.
    B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, Q. Li, Ceram. Int. 44, 10968–10974 (2018)CrossRefGoogle Scholar
  16. 16.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Li, X. Chen, F. Wang, B. Shen, J. Zhai, S. Zhang, Z. Zhou, ACS Appl. Mater. Interfaces 10, 28772–28779 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Du, F. An, Z.J. Xu, R.F. Cheng, R.Q. Chu, X.J. Yi, J.G. Hao, W. Li, Ceram. Int. 42, 1943–1949 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Du, Z. Xu, R. Chu, J. Hao, W. Li, P. Zheng, J. Mater. Sci. Mater. Electron. 27, 6535–6541 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, K. Wang, J. Li, Y.L. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci. 10, 528–537 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  22. 22.
    Y.L. Qin, J.L. Zhang, W.Z. Yao, C.J. Lu, S.J. Zhang, ACS Appl. Mater. Interfaces 8, 7257–7265 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Du, X. Yi, Z. Xu, C. Ban, T. Wang, B. Weng, K. Liao, Z. Huang, C. Wang, J. Mater. Sci. Mater. Electron. 23, 2053–2056 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Du, X. Yi, Z. Xu, C. Ban, D. Zhang, P. Zhao, C. Wang, J. Alloys Compd. 541, 454–457 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Du, G. Zang, X. Yi, Z. Xu, R. Chu, C. Ban, Y. Wei, P. Zhao, C. Wang, Mater. Lett. 79, 89–91 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Zuo, J. Fu, J. Am. Ceram. Soc. 94, 1467–1470 (2011)CrossRefGoogle Scholar
  27. 27.
    J. X.Cheng, Wu, X.Wang, B., J. Zhang, D. Zhu, X. Xiao, X. Wang, Lou, Appl. Phys. Lett. 103, 052906 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, ACS Appl. Mater. Interfaces 6, 6177–6180 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Wang, K. Wang, F. Yao, J.F. Li, F.H. Schader, K.G. Webber, W. Jo, J. Rödel, S. Zhang, J. Am. Ceram. Soc. 98, 2177–2182 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Scr. Mater. 94, 25–27 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Li, Z.J. Xua, R.Q. Chu, P. Fu, G.Z. Zang, J. Alloys Compd. 583, 305–308 (2014)CrossRefGoogle Scholar
  32. 32.
    W. Li, Z.J. Xua, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 94, 3181–3183 (2011)CrossRefGoogle Scholar
  33. 33.
    L.M. Jiang, Z. Tan, L.X. Xie, Y.Y. Li, J. Xing, J.G. Wu, Q. Chen, D.Q. Xiao, J.G. Zhu, J. Eur. Ceram. Soc. 38, 2335–2343 (2018)CrossRefGoogle Scholar
  34. 34.
    K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064–7067 (2005)CrossRefGoogle Scholar
  35. 35.
    Y. Shiratori, A. Magrez, C. Pithan, Chem. Phys. Lett. 391, 288–292 (2004)CrossRefGoogle Scholar
  36. 36.
    Z.Y. Shen, Z.M. Wang, W.C. Shen, Y.M. Li, W.Q Luo, J. Mater. Sci. Mater. Electron. 28, 137–141 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)CrossRefGoogle Scholar
  38. 38.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, H. Fuess, M. Hoelzel, H. Dammak, M.P. Thi, M. Hinterstein, J. Eur. Ceram. Soc. 37, 1387–1399 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, J. Koruza, J. Eur. Ceram. Soc. 36, 3391–3400 (2016)CrossRefGoogle Scholar
  40. 40.
    Y.P. Pu, Y.H. Liang, G.A. Yang, J.F. Wang, W.H. Yang, Bull. Chin. Ceram. Soc. 26, 892–895 (2007)Google Scholar
  41. 41.
    C.L. Yuan, X.Y. Liu, J.Y. Huang, C.R. Zhou, J.W. Xu, Acta Phys. Sin. 60, 025201 (2011)Google Scholar
  42. 42.
    M. Zhou, X.M. Lu, D.Y. Yang, J.L. He, F.Z. Huang, F. Mei, X.M. Ren, X.Y. Xu, Y. Li, J.S. Zhu, Phys. Chem. Chem. Phys. PCCP 19, 1868–1874 (2017)CrossRefGoogle Scholar
  43. 43.
    M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Cryst. Growth Des. 15, 1289–1294 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Yan, H. Zhang, M.J. Reece, X. Dong, Appl. Phys. Lett. 8, 082911 (2005)CrossRefGoogle Scholar
  45. 45.
    H.X. Yan, H.T. Zhang, R. Ubic, M.J. Reece, J. Liu, Z.J. Zhang, Z. Zhang, Adv. Mater. 10, 1261–1265 (2005)CrossRefGoogle Scholar
  46. 46.
    P.K. Davies, M.A. Akbas, J. Phys. Chem. Solids 61, 159–166 (2000)CrossRefGoogle Scholar
  47. 47.
    B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. B 72, 064113 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  2. 2.School of Environmental and Materials EngineeringYantai UniversityYantaiChina

Personalised recommendations