Advertisement

Sensitization of magnetic TiO2 with copper(II) tetrahydroxylphenyl porphyrin for photodegradation of methylene blue by visible LED light

  • Ensieh Gholamrezapor
  • Abbas EslamiEmail author
Article
  • 10 Downloads

Abstract

Magnetic photocatalyst (magnetite@silica@titania@copper(II) 5,10,15,20-tetrakis(4-(hydroxyl)phenyl) porphyrin, Fe3O4@SiO2@TiO2@CuIITHPP) (MSTCuP) has been synthesized, characterized, and utilized to degrade the methylene blue (MB) under a visible LED light irradiation. The structural characteristics of the MSTCuP were determined using FT-IR, SEM, EDX, XRD, BET and VSM techniques. The magnetic properties of the synthesized samples were measured by a vibrant sample magnetometer (VSM) with maximum saturation magnetization values of 10 and 8 emu g−1 for Fe3O4@SiO2@TiO2 (MST) and Fe3O4@SiO2@TiO2@CuIITHPP (MSTCuP) nanoparticles respectively. UV-DRS data show the red-shift of the absorption edge and decrease of the band gap to 1.8 eV. The degradation of MB was monitored by UV–Vis spectrometry. Maximum degradation of %98 for MB dye was attained by the use of MSTCuP nanocomposites as the catalyst and under 180 min irradiation of blue LED light. After three 180 min photocatalytic runs for MB degradation, the catalyst still showed high activity. The recovery of the catalyst was easily performed by applying the external magnetic field. The efficiency of green, red and yellow Vis-LED light sources for the photocatalytic degradation of MB was also investigated. The degradation of MB using MSTCuP nanocomposite was found to follow the pseudo-first-order kinetic.

Notes

Acknowledgements

We gratefully acknowledge financial support from the Research Council of the University of Mazandaran.

References

  1. 1.
    L. Tasseroul, S.D. Lambert, D. Eskenazi, M. Amoura, C.A. Páez, S. Hiligsmann, Ph Thonart, B. Heinrichs, J. Photochem. Photobiol. A Chem. 272, 90 (2013)CrossRefGoogle Scholar
  2. 2.
    V. Belessi, D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, T. Albanis, D. Petridis, Appl. Catal. B 87, 181 (2009)CrossRefGoogle Scholar
  3. 3.
    Z. He, T. Hong, J. Chen, S. Song, Sep. Purif. Technol. 96, 50 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Hankare, R. Patil, A. Jadhav, K. Garadkar, R. Sasikala, Appl. Catal. B 107, 333 (2011)CrossRefGoogle Scholar
  5. 5.
    I. Ullah, S. Ali, M.A. Hanif, S.A. Shahid, Int. Chem. Biochem. Sci. 2, 60 (2012)Google Scholar
  6. 6.
    A.F. Shojaei, A. Shams-Nateri, M. Ghomashpasand, Micro Nano Lett. 12, 161 (2017)CrossRefGoogle Scholar
  7. 7.
    D.I. Chenchik, J.M. Jandosov, Eurasi, Chemico-Tech. J. 19, 191 (2017)Google Scholar
  8. 8.
    R. Chalasani, S. Vasudevan, ACS Nano 7, 4093 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Costa, B. Ballarin, A. Spegni, F. Casoli, D. Gardini, J. Colloid Interface Sci. 388, 31 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Shyniya, K.A. Bhabu, T. Rajasekaran, J. Mater. Sci. Mater. Electron. 29, 16270 (2018)CrossRefGoogle Scholar
  11. 11.
    C.F. Chang, C.Y. Man, Ind. Eng. Chem. Res. 50, 11620 (2011)CrossRefGoogle Scholar
  12. 12.
    G.P. Yao, J. Li, Y. Luo, W.J. Sun, J. Mol. Catal. A Chem. 361, 29 (2012)CrossRefGoogle Scholar
  13. 13.
    X.T. Zhou, H.B. Ji, X.J. Huang, Molecules 17, 1149 (2012)CrossRefGoogle Scholar
  14. 14.
    E. Alzahrani, Am. J. Analyt. Chem. 8, 95 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Cheng, R. Ma, M. Li, J. Wu, F. Liu, X. Zhang, Chem. Eng. J. 210, 80 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Liu, Z. Jia, S. Ji, Y. Zheng, M. Li, H. Yang, Catl. Today 175, 293 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Teixeira, H. Mora, L.-M. Blasse, P.M. Martins, S. Carabineiro, S. Lanceros-Méndez, K. Kuehn, G. Cuniberti, J. Photochem. Photobiol. A Chem. 345, 27 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Phys. Status Solidi A 214, 1 (2017)Google Scholar
  19. 19.
    M.W. Xu, S.J. Bao, X.G. Zhang, Mater. Lett. 59, 2194 (2005)CrossRefGoogle Scholar
  20. 20.
    G.M. Ucoski, F.S. Nunes, G. Defreitas-Silva, Y.M. Idemori, S. Nakagaki, Appl. Catal. A Gen. 459, 121 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Shi, Y. Li, Q. Zhang, H. Wang, Int. J. Photoenergy (2012).  https://doi.org/10.1155/2012/365401 Google Scholar
  22. 22.
    X. Guo, Y.Y. Li, D.H. Shen, Y.Y. Song, X. Wang, Z.-G. Liu, J. Mol. Catal. A Chem. 367, 7 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, L. Jun, R. Słota, G. Dyrda, Res. Chem. Intermed. 33, 433 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Wang, D. Zhou, Z. Wu, J. Wan, X. Zheng, L. Yu, D.L. Phillips, Mater. Res. Bull. 57, 311 (2014)CrossRefGoogle Scholar
  25. 25.
    V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Appl. Catal. B 119, 197 (2012)CrossRefGoogle Scholar
  26. 26.
    E.N. El Qada, S.J. Allen, G.M. Walker, Chem. Eng. J. 124, 103 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater. 177, 70 (2010)CrossRefGoogle Scholar
  28. 28.
    N. Sharma, D. Tiwari, S. Singh, Int. J. Eng. Sci. Res. 3, 1 (2012)Google Scholar
  29. 29.
    P. Devi, A.K. Saroha, Sci. Total Environ. 578, 16 (2017)CrossRefGoogle Scholar
  30. 30.
    E. Aguilera-Ruiz, U.M. García-Pérez, M. De La Garza-Galván, P. Zambrano-Robledo, B. Bermúdez-Reyes, J. Peral, Appl. Surf. Sci. 328, 361 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Niu, B. Yao, Y. Chen, C. Peng, X. Yu, J. Zhang, G. Bai, Appl. Surf. Sci. 271, 39 (2013)CrossRefGoogle Scholar
  32. 32.
    W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Coord. Chem. Rev. 248, 1363 (2004)CrossRefGoogle Scholar
  33. 33.
    J.P. Ghosh, C.H. Langford, G. Achari, J. Phys. Chem. A 112, 10310 (2008)CrossRefGoogle Scholar
  34. 34.
    W.J. Sun, J. Li, G.P. Yao, F.X. Zhang, J.L. Wang, Appl. Surf. Sci. 258, 940 (2011)CrossRefGoogle Scholar
  35. 35.
    C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu, Ceram. Int. 40, 7093 (2014)CrossRefGoogle Scholar
  36. 36.
    C. Casado, R. Timmers, A. Sergejevs, C. Clarke, D. Allsopp, C. Bowen, R. Van Grieken, J. Marugán, Chem. Eng. J. 327, 1043 (2017)CrossRefGoogle Scholar
  37. 37.
    N. Doss, G. Carré, V. Keller, P. André, N. Keller, Water Air Soil Pollut. 229, 29 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Wang, T.T. Lim, Appl. Catal. B 100, 355 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Bee, R. Massart, S. Neveu, J. Magn. Magn. Mater. 149, 6 (1995)CrossRefGoogle Scholar
  40. 40.
    X. Zheng, L. Zhang, J. Li, S. Luo, J.P. Cheng, Chem. Commun. 47, 12325 (2011)CrossRefGoogle Scholar
  41. 41.
    J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, J. Am. Chem. Soc. 125, 10192 (2003)CrossRefGoogle Scholar
  42. 42.
    A. Zielińska-Jurek, Z. Bielan, S. Dudziak, I. Wolak, Z. Sobczak, T. Klimczuk, Hupka, J. Catal. 7, 360 (2017)Google Scholar
  43. 43.
    V.D. Rumyantseva, A.S. Gorshkova, A.F. Mironov, Macroheterocycles 6, 59 (2013)CrossRefGoogle Scholar
  44. 44.
    A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, J. Org. Chem. 32, 476 (1967)CrossRefGoogle Scholar
  45. 45.
    S. Rajput, C.U. Pittman Jr., D. Mohan, J. Colloid Interface Sci. 468, 334 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  47. 47.
    G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, M. Schiavello, J. Catal. 217, 334 (2003)CrossRefGoogle Scholar
  48. 48.
    C.F. Chang, C.Y. Man, Colloids Surf. A Phys. Chem. Eng. ASP 441, 255 (2014)CrossRefGoogle Scholar
  49. 49.
    X.F. Lü, W.J. Sun, J. Li, W.X. Xu, F.X. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 111, 161 (2013)CrossRefGoogle Scholar
  50. 50.
    R. Rahimi, E.H. Fard, S. Saadati, M. Rabbani, J. Sol-Gel Sci. Technol. 62, 351 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations