Advertisement

Quantum size effects and tunable visible photoluminescence in a-Si:H/nc-Si:H superlattices

  • Asha Yadav
  • Pratima AgarwalEmail author
  • Rana Biswas
Article
  • 29 Downloads

Abstract

Quantum size effects are commonly observed in semiconductor nanocrystals and quantum dots. Here, we demonstrate unexpected quantum size effects in an unusual bulk system with multiple interfaces, consisting of alternating layers of nanocrystalline silicon (nc-Si:H) and amorphous silicon (a-Si:H) material thin films. The nc-Si:H layers consist of silicon nanocrystals embedded in an amorphous matrix, with an amorphous-crystalline interface separating the two structures. Plasma-enhanced chemical vapor deposition was utilized to grow nanocrystalline-amorphous silicon superlattices with a varying thickness of the nanocrystalline layer. Strong visible photoluminescence at room temperature was deconvoluted into individual peaks. As the nanocrystalline silicon layer thickness was increased from 5 to 20 nm, the photoluminescence spectra red-shifted with the emission wavelength varying as d2 (d is the size of the nanocrystallites), the characteristic signature underlying quantum size effects. The size d of the nanocrystals was estimated by the measured shift of the Raman peak, and could be tuned by varying the thickness of the nc-Si:H layers. High resolution transmission electron microscopy show nanocrystals with a narrow size distribution, in an amorphous matrix. We also observe long wavelength photoluminescence from interfacial states that leads to persistent photconductivity. Nanocrystalline-amorphous superlattices offer a unique pathway for synthesizing embedded nanocrystals with controlled sizes and photonic signatures.

Notes

Acknowledgements

Financial support for fabricating rf-PECVD system was received from Department of Science and Technology (DST) [Grant No. DST/TM/SERI/2K11/78(G)]; and Defence Research and Development Organization (DRDO) [Grant No. ERIP/ER/0900376/M/01/1297], New Delhi, India. The study was sponsored by the Council of Scientific and Industrial Research (CSIR), New Delhi, India [80(0082)/13/EMR(II)]. One of the authors (Asha Yadav) acknowledges CSIR, New Delhi, India for the financial support. This work was supported (in part, R.B.) by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract [DE-AC02-07CH11358].

Supplementary material

10854_2019_763_MOESM1_ESM.docx (503 kb)
Supplementary material 1 XRD pattern of single layer a-Si:H and nc-Si:H thin films; Raman spectra of single layer a-Si:H and nc-Si:H thin films. (DOCX 502 KB)

References

  1. 1.
    W.L. Wilson, P.F. Szajowski, L.E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993)CrossRefGoogle Scholar
  2. 2.
    V. Lehmann, U. Gösele, Porous silicon formation: a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRefGoogle Scholar
  3. 3.
    O. Yukio, T. Keiji, T. Fumitaka, M. Hiroaki, K. Kenji, Visible photoluminescence from Si microcrystals embedded in SiO2 glass films. Jpn. J. Appl. Phys. 31, L365 (1992)CrossRefGoogle Scholar
  4. 4.
    C.M. Hessel, D. Reid, M.G. Panthani, M.R. Rasch, B.W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, B.A. Korgel, Synthesis of ligand-stabilized silicon nanocrystals with size dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393–401 (2012)CrossRefGoogle Scholar
  5. 5.
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRefGoogle Scholar
  6. 6.
    S. Mitra, V. Svrcek, M.M. Montero, T. Velusamy, D. Mariotti, Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals. Sci. Rep. 6, 27727 1–9 (2016)CrossRefGoogle Scholar
  7. 7.
    D.C. Hannah, J. Yang, N.J. Kramer, G.C. Schatz, U.R. Kortshagen, R.D. Schaller, Ultrafast photoluminescence in quantum-confined silicon nanocrystals arises from an amorphous surface layer. ACS Photonics 1, 960–967 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Steveler, H. Rinnert, M. Vergnat, Low-temperature photoluminescence properties of Nd-doped silicon oxide thin films containing silicon nanocrystals. J. Lumin. 183, 311–314 (2017)CrossRefGoogle Scholar
  9. 9.
    S.F. Ahmed, D. Banerjee, M.K. Mitra, K.K. Chattopadhyay, Visible photoluminescence from silicon-incorporated diamond like carbon films synthesized via direct current PECVD technique. J. Lumin. 131, 2352–2358 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Momeni, M.H. Mahdieh, Photoluminescence analysis of colloidal silicon nanoparticles in ethanol produced by double-pulse ns laser ablation. J. Lumin. 176, 136–143 (2016)CrossRefGoogle Scholar
  11. 11.
    C.-H. Cho, J.-W. Kang, I.-K. Park, S.-J. Park, Enhanced quantum confinement in tensile-strained silicon nanocrystals embedded in silicon nitride. Curr. Appl. Phys. 17, 1616–1621 (2017)CrossRefGoogle Scholar
  12. 12.
    S.J. Angus, A.J. Ferguson, A.S. Dzurak, R.G. Clark, Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Fujiwara, H. Inokawa, K. Yamazaki, H. Namatsu, Y. Takahashi, N.M. Zimmerman, S.B. Martin, Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 88, 053121 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377–1379 (1996)CrossRefGoogle Scholar
  15. 15.
    Y.T. Tan, T. Kamiya, Z.A.K. Durrani, H. Ahmed, Room temperature nanocrystalline silicon single-electron transistors. J. Appl. Phys. 94, 633–637 (2003)CrossRefGoogle Scholar
  16. 16.
    J.H. Shim, S. Im, N.H. Cho, Nanostructural features of ncSiH thin films prepared by PECVD. Appl. Surf. Sci. 234, 268–273 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380 (1990)CrossRefGoogle Scholar
  18. 18.
    A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, N. Yokoyama, Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition. J. Appl. Phys. 80, 4006–4011 (1996)CrossRefGoogle Scholar
  19. 19.
    L.N. Dinh, L.L. Chase, M. Balooch, L.J. Terminello, F. Wooten, Photoluminescence of oxidized silicon nanoclusters deposited on the basal plane of graphite. Appl. Phys. Lett. 65, 3111–3113 (1994)CrossRefGoogle Scholar
  20. 20.
    E. Werwa, A.A. Seraphin, L.A. Chiu, C. Zhou, K.D. Kolenbrander, Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett. 64, 1821–1823 (1994)CrossRefGoogle Scholar
  21. 21.
    Y.-H. So, S. Huang, G. Conibeer, M.A. Green, Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers. Thin Solid Films 519, 5408–5412 (2011)CrossRefGoogle Scholar
  22. 22.
    F. Iacona, G. Franzò, C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 87, 1295–1303 (2000)CrossRefGoogle Scholar
  23. 23.
    D. Zhang, R.M. Kolbas, P.D. Milewski, D.J. Lichtenwalner, A.I. Kingon, J.M. Zavada, Light emission from thermally oxidized silicon nanoparticles. Appl. Phys. Lett. 65, 2684–2686 (1994)CrossRefGoogle Scholar
  24. 24.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661–663 (2002)CrossRefGoogle Scholar
  25. 25.
    P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos, A. Travlos, Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures. Mater. Sci. Eng. B 69, 345–349 (2000)CrossRefGoogle Scholar
  26. 26.
    L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, M. Zacharias, P.M. Fauchet, J.P. McCaffrey, D.J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl. Phys. Lett. 72, 43–45 (1998)CrossRefGoogle Scholar
  27. 27.
    D.J. Lockwood, Z.H. Lu, J.M. Baribeau, Quantum confined luminescence in Si/SiO2 superlattices. Phys. Rev. Lett. 76, 539–541 (1996)CrossRefGoogle Scholar
  28. 28.
    M. Zacharias, L. Tsybeskov, K.D. Hirschman, P.M. Fauchet, J. Bläsing, P. Kohlert, P. Veit, Nanocrystalline silicon superlattices: fabrication and characterization. J. Non-Cryst. Solids 227, 1132–1136 (1998)CrossRefGoogle Scholar
  29. 29.
    J. Dresner, Transistor having a superlattice, U.S Patent 4, 697,197, (1987)Google Scholar
  30. 30.
    S. Pattnaik, N. Chakravarty, R. Biswas, V. Dalal, D. Slafer, Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells. Sol. Energy Mater. Sol. Cells 129, 115–123 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Curtin, R. Biswas, V. Dalal, Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells. Appl. Phys. Lett. 95, 231102 (2009)CrossRefGoogle Scholar
  32. 32.
    C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011)CrossRefGoogle Scholar
  33. 33.
    O. Isabella, J. Krč, M. Zeman, Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Appl. Phys. Lett. 97, 101106 (2010)CrossRefGoogle Scholar
  34. 34.
    B.C. Pan, R. Biswas, Structure and simulation of hydrogenated nanocrystalline silicon. J. Appl. Phys. 96, 6247–6252 (2004)CrossRefGoogle Scholar
  35. 35.
    B.C. Pan, R. Biswas, Simulation of hydrogen evolution from nano-crystalline silicon. J. Non-Cryst. Solids 333, 44–47 (2004)CrossRefGoogle Scholar
  36. 36.
    Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, The structure and properties of nanosize crystalline silicon films. J. Appl. Phys. 75, 797–803 (1994)CrossRefGoogle Scholar
  37. 37.
    L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRefGoogle Scholar
  38. 38.
    E.M.F. Vieira, J. Toudert, A.G. Rolo, A. Parisini, J.P. Leitao, M.R. Correia, N. Franco, E. Alves, A. Chahboun, J. Martin Sanchez, R. Serna, M.J.M. Gomes, SiGe layer thickness effect on the structural and optical properties of well organised SiGe/SiO2 multilayers. Nanotechnology 28, 345701 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices. Superlattices Microstruct. 85, 776–783 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for EnergyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Departments of Physics and Astronomy, and Electrical and Computer Engineering, Microelectronics Research Center, and Ames LaboratoryIowa State UniversityAmesUSA

Personalised recommendations