Advertisement

Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles

  • P. Lokanatha Reddy
  • Kalim Deshmukh
  • K. Chidambaram
  • Mohammad M. Nazeer Ali
  • Kishor Kumar Sadasivuni
  • Y. Ravi Kumar
  • R. Lakshmipathy
  • S. K. Khadheer PashaEmail author
Article
  • 44 Downloads

Abstract

In this study, zinc sulphide nanoparticles (ZnS NPs) have been synthesized by green synthesis approach. These ZnS NPs were used as nanofiller to fabricate polyvinyl alcohol (PVA) based nanocomposite films via solution casting method. The PVA/ZnS nanocomposite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy and thermogravimetric analysis. The results from these characterization techniques evidenced the improvement in structural, morphological and thermal properties of PVA/ZnS nanocomposite films and also confirmed the incorporation of ZnS NPs in the PVA matrix. In addition to that, the dielectric properties of the PVA/ZnS nanocomposite films were investigated for different frequencies (50 Hz–1 MHz) and temperatures (40–140 °C) using an impedance analyzer. The values of dielectric constant and dielectric loss of PVA/ZnS nanocomposite films were observed to be 328.93 (50 Hz, 140 °C) and 6.02 (50 Hz, 140 °C) with 3 wt% ZnS NPs content. This enhancement in dielectric properties demonstrated the good interaction between ZnS NPs and PVA matrix. The aforementioned results evidenced that the ZnS NPs were homogeneously distributed within the PVA matrix.

Notes

Acknowledgements

This work was supported by RGEMS project, VIT-AP/2018/VC/RGEMS/2. The author, P. L. Reddy is thankful to Dr. Kalim Deshmukh, from Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, Tamil Nadu, India for his excellent support, suggestions and insightful comments during this research work.

References

  1. 1.
    A. Okada, A. Usuki, Macromol. Mater. Eng. 291, 1449–1476 (2006)CrossRefGoogle Scholar
  2. 2.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240–1253 (2016)CrossRefGoogle Scholar
  3. 3.
    K.D. Satapathy, K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, J. Ahmad, Adv. Mater. Lett. 8, 288–294 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Gong, C.Y. Tang, L. Pan, Z. Hao, C.P. Tsui, Composites B 60, 144–149 (2014)CrossRefGoogle Scholar
  5. 5.
    P.K. Arya, V. Mathur, D. Patidar, Phase Transit. 90, 695–702 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Ahmad, K. Deshmukh, M. Habib, M.B. Hägg, Arab. J. Sci. Eng. 39, 6805–6814 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Saha, S.K.A. Ali, S. Kar, P. Saha, A.K.J. Banthia, Appl. Polym. Sci. 102, 4963–4970 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Thabet, A.A. Ebnalwaled, Measurement 110, 78–83 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Muzaffar, M.B. Ahamed, K. Deshmukh, M. Faisal, S.K.K. Pasha, Mater. Lett. 218, 217–220 (2018)CrossRefGoogle Scholar
  10. 10.
    Z.H. Mbhele, M.G. Salemane, C.G.C.E.V. Sittert, J.M. Nedeljkovic, V. Djokovic, A.S. Luyt, Chem. Mater. 15, 5019–5024 (2003)CrossRefGoogle Scholar
  11. 11.
    E.G. Ahangar, M.H.A. Fard, N. Shahtahmassebi, P. Maddahi, J. Food Process. Preserv. 39, 1442–1451 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Liu, X. Cui, Q. Chen, L. Lizhen, X. Feng, X. Meng, Catal. Commun. 58, 30–33 (2015)CrossRefGoogle Scholar
  13. 13.
    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Mater. Today Proc. 3, 1864–1873 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Deshmukh, J. Ahmad, M.B. Hagg, Ionics 20, 957–967 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)CrossRefGoogle Scholar
  16. 16.
    G.J. Thangamani, K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham, K.V. Rao, K. Chidambaram, M.B. Ahamed, A.N. Grace, M. Faisal, S.K.K. Pasha, Microchim. Acta 184, 3977–3987 (2017)CrossRefGoogle Scholar
  17. 17.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)CrossRefGoogle Scholar
  18. 18.
    M.K. Mohanapriya, K. Deshmukh, K. Chidambaram, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, J. Mater. Sci.: Mater. Electron. 28, 6099–6111 (2017)Google Scholar
  19. 19.
    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Adv. Mater. Lett. 7, 996–1002 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, A.R. Polu, K. Chidambaram, J. Electron. Mater. 46, 2406–2418 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, J. Appl. Polym. Sci. 133, 44427–44438 (2016)Google Scholar
  22. 22.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, S.K.K. Pasha, R.R. Deshmukh, K. Chidambaram, Mater. Chem. Phys. 186, 188–201 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 23(1–13), 159 (2016)CrossRefGoogle Scholar
  24. 24.
    C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167–174 (2002)CrossRefGoogle Scholar
  25. 25.
    E. Sheha, H. Khoder, T.S. Shanap, M.G.E. Shaarawy, M.K.E. Mansy, Optik 123, 1161–1166 (2012)CrossRefGoogle Scholar
  26. 26.
    R.P. Chahal, S. Mahendia, A.K. Tomer, S. Kumar, Appl. Surf. Sci. 343, 160–165 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Sirait, S. Gea, M. Tlan, E. Marlianto, Am. J. Phys. Chem. 3, 5–8 (2014)CrossRefGoogle Scholar
  28. 28.
    S.K.K. Pasha, K. Deshmukh, M.B. Ahamed, K. Chidambaram, M.K. Mohanapriya, N.A.N. Raj, Adv. Polym. Technol. 36, 352–361 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Ahmad, K. Deshmukh, M.B. Hägg, Int. J. Polym. Anal. Charact. 18, 287–296 (2013)CrossRefGoogle Scholar
  30. 30.
    A.R. Loukanov, C.D. Dushkin, K.I. Papazova, A.V. Kirov, M.V. Abrashev, E. Adachi, Colloids Surf. A 245, 9–14 (2004)CrossRefGoogle Scholar
  31. 31.
    S.V. Svechnikov, L.V. Zav’yalova, N.N. Roshchina, V.E. Rodionov, V.S. Khomchenko, L.I. Berezhinskii, I.V. Prokopenko, P.M. Litvin, O.S. Litvin, Y.V. Kolomzarov, Y.A. Tsyrkunov, Semiconductors 34, 1128–1132 (2000)CrossRefGoogle Scholar
  32. 32.
    K. Manzoor, S.R. Vadera, N. Kumar, Appl. Phys. Lett. 84, 284–292 (2004)CrossRefGoogle Scholar
  33. 33.
    D. Jassby, M. Wiesner, Langmuir 27, 902–908 (2011)CrossRefGoogle Scholar
  34. 34.
    M.Q. Israr, J.R. Sadaf, L.L. Yang, O. Nur, M. Willander, J. Palisaitis, P.O.A. Persson, J. Appl. Phys. Lett. 95, 073114–073125 (2009)CrossRefGoogle Scholar
  35. 35.
    C.S. Pathak, M.K. Mandal, V. Agarwala, Superlattices Microstruct. 58, 135–143 (2013)CrossRefGoogle Scholar
  36. 36.
    H.Y. Lu, S.Y. Chu, S.S. Tan, J. Cryst. Growth 269, 385–391 (2004)CrossRefGoogle Scholar
  37. 37.
    L. Yin, D. Wang, J.F. Huang, L. Cao, O. Haibo, X. Yong, J. Alloys Compd. 664, 476–480 (2016)CrossRefGoogle Scholar
  38. 38.
    F.A.L. Porta, M.M. Ferrer, Y.V.B.D. Santana, C.W. Raubach, V.M. Longo, J.R. Sambrano, E. Longo, J. Andrés, M.S. Li, J.A. Varela, J. Alloys Compd. 556, 153–159 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Mater. Chem. Phys. 78, 372–379 (2003)CrossRefGoogle Scholar
  40. 40.
    L.B. Chandrasekar, R. Chandramohan, R. Vijayalakshmi, S. Chandrasekaran, Int. Nano Lett. 5, 71–75 (2015)CrossRefGoogle Scholar
  41. 41.
    K. Prasad, A.K. Jha, J. Colloid Interface Sci. 342, 68–72 (2010)CrossRefGoogle Scholar
  42. 42.
    N.A. Reddy, R. Lakshmipathy, N.C. Sarada, Alex. Eng. J. 53, 969–975 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Lakshmipathy, N.C. Sarada, K. Chidambaram, S.K.K. Pasha, Int. J. Nanomed. 10, 183–188 (2015)Google Scholar
  44. 44.
    K.G. Rao, C.H. Ashok, K.V. Rao, C.H.S. Chakra, V. Rajendar, Int. J. Multidiscip. Adv. Res. Trends 2, 82–90 (2015)Google Scholar
  45. 45.
    R. Lakshmipathy, M.K. Kesarla, A.R. Nimmala, S. Godavarthi, C.M. Kukkambakam, L.M. Gomez, N.C. Sarada, Res. Chem. Intermed. 43, 1329–1339 (2017)CrossRefGoogle Scholar
  46. 46.
    H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, T.B. Chaabane, J. Trop. Dis. 9, 757–762 (2016)Google Scholar
  47. 47.
    H.N. Friedlander, H.E. Harris, J.G. Pritchard, J. Polym. Sci. A 4, 649–664 (2003)CrossRefGoogle Scholar
  48. 48.
    M. Alexandre, P. Dubois, Mater. Sci. Eng. R 28, 1–63 (2000)CrossRefGoogle Scholar
  49. 49.
    T.P. Nguyen, A.D. Le, T.B. Vu, Q.V. Lam, J. Lumin. 192, 166–172 (2017)CrossRefGoogle Scholar
  50. 50.
    S.M. Pawde, K. Deshmukh, S. Parab, J. Appl. Polym. Sci. 109, 1328–1337 (2008)CrossRefGoogle Scholar
  51. 51.
    S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 109, 3431–3437 (2008)CrossRefGoogle Scholar
  52. 52.
    P. Iranmanesh, S. Saeednia, M. Nourzpoora, Chin. Phys. 24(1–4), 046104 (2015)CrossRefGoogle Scholar
  53. 53.
    N.V. Bhat, M.M. Nate, M.B. Kurup, V.A. Bambole, S. Sabharwal, Nucl. Instrum. Methods Phys. Res. Sect. B. 237, 585–592 (2005)CrossRefGoogle Scholar
  54. 54.
    J. Lee, T. Isobe, M. Senna, J. Colloid Interface Sci. 177, 490–494 (1996)CrossRefGoogle Scholar
  55. 55.
    I. Omkaram, R.P.S. Chakradhar, J.L. Rao, Physica B 388, 318–325 (2007)CrossRefGoogle Scholar
  56. 56.
    Y.H. Yun, H.G. Youn, J.Y. Shin, Int. J. Biol. Macromol. 104, 1150–1157 (2017)CrossRefGoogle Scholar
  57. 57.
    G.J. Thangamani, K. Deshmukh, K. Chidambaram, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M. Faisal, N.A. Nambiraj, S.K.K. Pasha, J. Mater. Sci.: Mater. Electron. 29, 5186–5205 (2018)Google Scholar
  58. 58.
    D.Z. Qiang, L.Y. Tao, X.X. Ming, X.Y. Ye, Chin. Chem. Lett. 24, 17–19 (2013)CrossRefGoogle Scholar
  59. 59.
    B. Mensah, S. Kim, S. Arepalli, C. Nah, J. Appl. Polym. Sci. 131, 40640–40652 (2014)CrossRefGoogle Scholar
  60. 60.
    K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, K. Chidambaram, J. Mater. Sci.: Mater. Electron. 27, 11410–11424 (2016)Google Scholar
  61. 61.
    I. Tantis, G.C. Psarras, D. Tasis, Exp. Polym. Lett. 6, 283–292 (2012)CrossRefGoogle Scholar
  62. 62.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, J. Mater. Sci.: Mater. Electron. 28, 559–575 (2017)Google Scholar
  63. 63.
    P. Murugaraj, D. Mainwaring, N.M. Huertas, J. Appl. Phys. 98, 054304–054309 (2005)CrossRefGoogle Scholar
  64. 64.
    A. Kamath, H. Devendrappa, Polym. Bull. 72, 2705–2724 (2015)CrossRefGoogle Scholar
  65. 65.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A.A. AlMaadeed, K. Chidambaram, J. Mater. Sci.: Mater. Electron. 28, 973–986 (2017)Google Scholar
  66. 66.
    G. Wang, Y. Deng, Y. Xiang, L. Guo, Adv. Funct. Mater. 18, 2584–2592 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Lokanatha Reddy
    • 1
  • Kalim Deshmukh
    • 2
  • K. Chidambaram
    • 1
  • Mohammad M. Nazeer Ali
    • 3
  • Kishor Kumar Sadasivuni
    • 4
  • Y. Ravi Kumar
    • 5
  • R. Lakshmipathy
    • 6
  • S. K. Khadheer Pasha
    • 5
    Email author
  1. 1.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  3. 3.Department of PhysicsThe New College (Autonomous)ChennaiIndia
  4. 4.Center for Advanced MaterialsQatar UniversityDohaQatar
  5. 5.Department of PhysicsVIT–AP UniversityGunturIndia
  6. 6.Department of ChemistryKCG College of TechnologyChennaiIndia

Personalised recommendations